Дана квадратичная функция h(t)=24t−4t², графиком которой является парабола, ветви которой направлены вниз. Функция своего наибольшего значения достигает в вершине параболы.Чтобы определить максимальную высоту, надо найти координату Y вершины (в данном задании это h).Чтобы определить время, в течение которого мяч летит вверх, надо найти координату X вершины (в данном задании это t). Все время полета мяча будет в 2 раза больше.x₀=t₀=(−b)/2а =−24 /2(-4) = 3 секунды. Время, через которое мяч упадет на землю, равно 2⋅t₀=2⋅3=6 секунд.y₀=h₀= 24⋅3-4⋅3²=72-36=36 метров.
Подставим корни х = 3 и х=-4 в уравнение х³+рх+k = 0 для того, чтобы найти р и k. Получим систему двух уравнений с двумя неизвестными. {3³+3p+k = 0 {(-4)³-4p+k = 0
Упростим: {3p+k = - 27 {-4p+k = 64
Из первого уравнения вычтем второе и получим: 3p+k+4p-k = - 27 - 64 7p = - 81 p = - 81 : 7 p = - 13 Подставим р = - 13 в первое уравнение 3p+k = - 27 и получим: 3·(-13) + k = - 27 -39 +k = - 27 k = 39 - 27 k = 12
Теперь при p = -13 и k = 12 наш многочлен примет вид: x³-13x+12.
Этому уравнению x³-13x+12 = 0 удовлетворяют данные корни х₁ = 3 х₂ = - 4 Проверим х=1 и х = - 1 При х = 1 получаем 1³-13·1+12=0 1+12-13=0 0 = 0 верное равенство, значит, х₃= 1. При х = - 1 получаем (-1)³-13·(-1)+12=0 -1+13+12=0 24 ≠ 0 ,значит, х ≠ - 1 ответ: х₃= 1.
2(4х-3)=8х-6
Объяснение:
Вроде так