Подставляем первый корень в уравнение:
12*(0,25^2) + b*0,25 + c = 0,
3*4*(1/16) + (b/4) + c = 0;
(3/4) + (b/4) + c = 0, домножим уравнение на 4,
3 + b + 4c = 0, (*)
Подставляем второй корень в уравнение:
12*(4/3)^2 + b*(4/3) + c = 0;
4*3*(16/9) + b*(4/3) + c = 0;
(64/3) + (4/3)*b + c = 0;
домножим уравнение на 3,
64 + 4b+ 3c = 0, (**).
У нас получилась система из двух уравнений (*) и (**)
3 + b + 4c = 0
64 + 4b + 3c = 0,
Выразим b из первого уравнения системы и подставим во второе уравнение системы:
b = -3 - 4c,
64 + 4*( -3 - 4c) + 3c = 0;
64 - 12 - 16c + 3c = 0;
52 - 13c = 0;
13c = 52,
c = 52/13 = 4.
Объяснение:
Объяснение:
( x + 2 ) ^ 4 - 4 * ( x + 2 ) ^ 2 - 5 = 0 ;
Пусть ( х + 2 ) ^ 2 = а, тогда:
а ^ 2 - 4 * a - 5 = 0 ;
a1 = ( 4 - √36 ) / ( 2 * 1 ) = ( 4 - 6 ) / 2 = - 2 / 2 = - 1 ;
a2 = ( 4 + √36 ) / ( 2 * 1 ) = ( 4 + 6 ) / 2 = 10 / 2 = 5 ;
Тогда:
1 ) ( x + 2 ) ^ 2 = - 1 ;
x ^ 2 + 4 * x + 4 = - 1 ;
x ^ 2 + 4 * x + 4 + 1 = 0 ;
x ^ 2 + 4 * x + 5 = 0 ;
Нет корней ;
2 ) ( x + 2 ) ^ 2 = 5 ;
x ^ 2 + 4 * x + 4 = 5 ;
x ^ 2 + 4 * x - 1 = 0 ;
x1 = ( -4 - √20 ) / ( 2·1 ) = -2 - √5 ;
x2 = ( -4 + √20 ) / ( 2·1 ) = -2 + √5 ;
ответ: х = -2 - √5 и х = -2 + √5