Все 4 функции вида y = kx + b. если b > 0, то прямая соприкасается с осью ординат выше оси абсцисс, а если b < 0, то прямая соприкасается с осью ординат ниже оси абсцисс.
Значит, графики A и B соответствуют уравнениям 2 и 3, а графики C и D соответствуют уравнениям 1 и 4. Определим теперь конкретно какой график к какому уравнению подходит.
Рассмотрим уравнение, в котором k = 2
y = 2x + 5, причём x = = 2,5. Значит, прямая проходит через точку абсцисс 2,5.
Рассмотрим уравнение, в котором k = 1
y = x - 5, из свойств числового коэффициента b следует, что график проходит через точку ординат -5, а из формулы y = a(x - m)² следует, что точка соприкосновения оси абсцисс и прямой смещена вправо на 5.
Проведя аналогичные рассуждения с остальными двумя уравнениями и их графиками, придём к выводу, что
1) - C
2) - A
3) - B
4) - D
ответ:Прежде чем найдем значение данного выражения при заданном значении переменной х, у выражение, то есть раскроем скобки. Следовательно получим:
x(x + 4) - (x - 3)(x - 5) = х * х + х * 4 - (х * х - 5 * х - 3 * х - 3 * (-5)) = х^2 - 4 * х - (х ^2 - 5 * х - 3 * х + 15) = х^2 - 4 * х - (х ^2 - 8 * х + 15) = х^2 - 4 * х - х ^2 + 8 * х - 15 = х^2 - х ^2 - 4 * х + 8 * х - 15 = 0 - 4 * х + 8 * х - 15 = 4 * х - 15.
Если х = 1/6, то значение выражения 4 * х - 15 = 4 * 1/3 - 15 = 4/3 - 15 = 4/3 - 14 3/3 = 4/3 - 13 6/3 = -13 2/3.
Объяснение:
9 см
Объяснение:
пусть х см -ширина прям-ника,тогда (х + 5)см - длина прям-ника.Зная.что его площадь равна 36 см2,составим уравнение:
х(х + 5)=36
х2 + 5х - 36 = 0
Д= 25 + 144 = 169(2 корня,тк 169>0)
х(первое) = (-5 + 13):2 = 4
х 2ое = (-5 - 13):2 = -9(не подходит по смыслу задачи)
х=4(см) - ширина
4+5=9(см) - длина