Вначале необходимо найти производную и приравнять ее к 0 для нахождения экстремумов:
y' = (6cosx)' = -6*sinx = 0, sinx=0, x=pi/2 + pi*k
Дан промежуток [-pi/2; 0], необходимо определить, какие именно точки из множества решений попадают в него:
k=-1, x=pi/2-pi=-pi/2 - принадлежит промежутку
Является ли х=-pi/2 - экстремумом? - посчитать знак производной ДО и ПОСЛЕ этой точки: производная меняет свой знак с плюса на минус: х=-pi/2 - максимум функции.
На [-pi/2; 0] функция убывает, значит наибольшее значение y(-pi/2)=0, наименьшее значение y(0)=6
Пошаговое объяснение:
Дано:
Стороны треугольника AC=2 см, AB=3 см, BC=4 см.
Найти косинусы треугольника.
По теореме косинусов квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.
AB^2=AC^2+BC^2-2*AC*BC*cosC
Значит cosC= (в числителе)AC^2+BC^2-AB^2 /(в знаменатель)2*AC*BC=
=2^2+4^2-3^2 / 2*2*4 = 4+16-9 /16 = 0,6875 - это cos46°
BC^2=AC^2+AB^2-2*AC*AB*cosA
Значит cosA=(в числителе)AC^2+AB^2-BC^2 /(в знаменатель)2*AC*AB=
=2^2+3^2-4^2 /2*2*3 = 4+9-16 /12 = -0,25 - это cos105°
AC^2=BC^2+AB^2-2*BC*AB*cosB
Значит cosB=(в числителе)BC^2+AB^2-AC^2 /(в знаменатель)2*BC*AB=
=4^2+3^2-2^2 /2*4*3 = 16+9-4 /24 = 0,875 - это cos29°
Подберем два числа так чтобы оба были полными квадратами и чтоб сумма была 31
1+30=31 - не подходит
4+27=31 - не подходит
9+22=31 - не подходит
16+15=31 - не подходит
25+6=31 - не подходит
Таких чисел нет
ответ: 0