1,(18)=1+0,(18)
0,(18)=x
18,(18)=100x
18+0,(18)=100x
18+x=100x
18=99x
x=18/99
x=2/11
0,(18)=2/11
1,(18)=1+0,(18) =1+2/11=13/11
2,(27)=7+0,(27)
0,(27)=x
27,(27)=100x
27+0,(27)=100x
27+x=100x
27=99x
x=27/99
x=3/11
0,(27)=3/11
1,(27)=1+0,(27) =1+3/11=14/11
0,(13)=x
13,(13)=100x
13+0,(13)=100x
13+x=100x
13=99x
x=13/99
0,(13)=13/99
2,(23)=7+0,(23)
0,(23)=x
23,(23)=100x
23+0,(23)=100x
23+x=100x
23=99x
x=23/99
x=23/99
0,(23)=23/99
2,(23)=2+0,(23) =2+23/99
Не понятно чему равна первая функция, поэтому напишу просто как решить. Если графики функций пересекаются значит у них обоих имеется одна и таже общая точка, т.е.координаты этой точки удовлетворяют обоим уравнениям. Теперь чтобы найти эту точку делаем следующее: из любого уравнения выражаем какую-либо неизвестную через другую, н-р, я выражу из второго уравнения х. 3x+5y=-12
3х=-12-5у
х=(-12-5у)/3
Затем в другое уравнение вместо х подставляем полученное выражение
2( (-12-5у)/3 )-3y = (тут уж я не знаю чему там у тебя равно) Преобразуем выражение и находим у
(-24-10у)/3 - 3у= (дальше я преобразовать не могу так не знаю числа стоящего после равно)
Нашли у ( должно получиться какое-нибудь число)
Полученное число нужно подставить в выделенное выражение и получим х. Данные два числа записываем как координаты точки (х,у)
Нужно просто подставить (-1) в х(икс)
f(-1)=-1/3 -1=0,3-1=-0,7
Если что, я сама точно не знаю, но принцип решения такой