Множество значений функции y = f(x) на некотором интервале x представляет собой множество всех значений, которые данная функция принимает при переборе всех значений x∈X.
Мы знаем, что производная функции будет положительной для всех значений x, расположенных в интервале [-1; 1], то есть на протяжении всей области определения функция арксинуса будет возрастать. Значит, самое маленькое значение она примет при x, равном -1, а самое большое – при x, равном 1
Таким образом, область значений функции арксинус будет равна E(arcsin x)=[-
C^4 - 27C = C * ( C^3 - 27) = C * ( C - 3 ) * ( C^2 + 3C + 9)
25 - C^2 = ( 5 - C ) * ( 5 + C )
Y = 2X - 2 Графиком является прямая линия. Для построения достаточны две точки Точка С ( 0 ; - 2 ) и B ( 1 ; 0 ) Соединяем указанные точки. Это и есть график функции Y = 2X - 2 Проходит ли точка А ( - 10 ; - 20 ) через данный график? Y = 2X - 2 - 20 ≠ 2 * ( - 10) - 2 - 20 ≠ - 22 Равенство неверное, поэтому данная точка не проходит через указанный график
Множество значений функции y = f(x) на некотором интервале x представляет собой множество всех значений, которые данная функция принимает при переборе всех значений x∈X.
Мы знаем, что производная функции будет положительной для всех значений x, расположенных в интервале [-1; 1], то есть на протяжении всей области определения функция арксинуса будет возрастать. Значит, самое маленькое значение она примет при x, равном -1, а самое большое – при x, равном 1
Таким образом, область значений функции арксинус будет равна E(arcsin x)=[-