Решить графически уравнение вида f(x)=g(x), значит построить графики двух функций у=f(x) и у=g(x) и найти точки пересечения этих графиков.
1) Построить параболу у=х² по точкам (-4;16) (-3;9) (-2;4) (-1;1) (0;0) (1;1) (2;4) (3;9) (4;16) и соединить эти точки точки плавной линией от первой до последней.
Построить прямую у=9. Это прямая проходит через точку (0;9) и параллельна оси ох.
Два графика пересекутся в точке, у которой первая координата по оси х равна -3 и в точке, у которой первая координата по оси х равна 3. О т в е т. х=-3; х=3.
2) Аналогично
Построить параболу у=х² по точкам (-4;16) (-3;9) (-2;4) (-1;1) (0;0) (1;1) (2;4) (3;9) (4;16) и соединить эти точки точки плавной линией от первой до последней.
Построить прямую у=4. Это прямая, проходит через точку (0;4) и параллельна оси ох.
Два графика пересекутся в точке, у которой первая координата по оси х равна -2 и в точке, у которой первая координата по оси х равна 2. О т в е т. х=-2; х=2.
Это неполное задание. Полностью оно звучит так: Функция f(x) задается системой: { f(x) = x + 3 ; при x < 0 { f(x) = (x - 1)(x - 3) ; при 0 < x < 5 { f(x) = -x + 13 ; при x > 5 При некотором k уравнение f(x) = k(x + 3) имеет ровно 3 корня. Решение. Прямая y = k(x + 3) проходит через точку (-3; 0). При любом k она будет пересекать две прямых, при x < 0 и при x > 5. При k = 1 она совпадает с прямой f(x) = x + 3, тогда уравнение имеет бесконечное количество корней. Ровно 3 корня будет, если эта прямая проходит через вершину параболы. M0(2; -1). Уравнение прямой через 2 точки: (x + 3) / (2 + 3) = (y - 0) / (-1 - 0) (x + 3)/5 = y/(-1) y = -1/5*(x + 3) k = -1/5
тоесть объем по формуле равен V=1/3SH высота у тебя дана найдем полощадь основания S=3V/H=75/3=25pi
Теперь плоскость это прямоугольник тоесть Площадь его равна длину на ширину
найдем для этого диаметр S=pi*r^2
2r=d
S=pi*4r^2
S=pr*4r^2=25pi
4r^2=25
r^2=25/4
r=2.5
D=2r=2.5*2=5
Теперь умножим их Sсечения =5*3=15 см квадрат!