Необходимые условия экстремума:
Имеем две критические (стационарные) точки: и
Достаточные условия экстремума: если при переходе через критическую точку производная непрерывной функции меняет знак на противоположный, то имеем экстремум функции в этой точке.
Если точка с абсциссой меняет знак с "+" на "–" (двигаясь в направлении увеличения
), то
— точка максимума, а если с "–" на "+" , то
— точка минимума.
Из промежутка выберем, например,
и имеем:
Из промежутка выберем, например,
и имеем:
Имеем максимум в точке с абсциссой
Из промежутка выберем, например,
и имеем:
Имеем минимум в точке с абсциссой
ответ:
(7-3у)(4+2у-4)=7(3+2у-4)-3у(4+2у-4)=28+14у-28-12у-6у²+12у=14у-6у²,при у=5
14×5-6×5²=70-6×25=70-150=-80