

Необходимые условия экстремума:




Имеем две критические (стационарные) точки:
и 
Достаточные условия экстремума: если при переходе через критическую точку производная непрерывной функции меняет знак на противоположный, то имеем экстремум функции в этой точке.
Если точка с абсциссой
меняет знак с "+" на "–" (двигаясь в направлении увеличения
), то
— точка максимума, а если с "–" на "+" , то
— точка минимума.
Из промежутка
выберем, например,
и имеем: 
Из промежутка
выберем, например,
и имеем: 
Имеем максимум в точке с абсциссой 
Из промежутка
выберем, например,
и имеем: 
Имеем минимум в точке с абсциссой 
ответ: 
(7-3у)(4+2у-4)=7(3+2у-4)-3у(4+2у-4)=28+14у-28-12у-6у²+12у=14у-6у²,при у=5
14×5-6×5²=70-6×25=70-150=-80