М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
котикДжеек
котикДжеек
26.05.2020 20:25 •  Алгебра

9клас (АЛГЕБРА)

Все задания нужно розписать!


9клас (АЛГЕБРА)Все задания нужно розписать!

👇
Открыть все ответы
Ответ:

1) проверяем условие при наименьшем возможном значении n.

n>5, значит проверяем условие при n=6

2^66^2 \\ 6436

Верно!

2) Сделаем предположение, что для всех n=k, k>5 верно неравенство:

2^kk^2

3) Тогда при n=k+1 должно выполняться неравенство:

2^{k+1}(k+1)^2

Вернемся к неравенству из второго пункта и домножим его на 2:

2^kk^2 \ |*2 \\ 2*2^k2k^2 \\ 2^{k+1}2k^2

Подставим 2k² в 3-й пункт и рассмотрим полученное неравенство:

2k^2(k+1)^2 \\ 2k^2k^2+2k+1 \\ k^2-2k-10 \\ \\ k^2-2k-1=0 \\ D=2^2+4*1=8=(2\sqrt{2})^2 \\ \\ k_{1,2}=\frac{2 \pm2\sqrt{2}}{2}=1 \pm \sqrt{2} \\ \\ +++(1-\sqrt{2})---(1+\sqrt{2})+++_k

по методу интервалов определяем, что неравенство k²-2k-1>0 выполняется при  k>1+√2, тогда при k>5 оно тоже выполняется (так как 5>1+√2)

Тогда обратным ходом получаем 2k²>k²+2k+1 при k>5 или 2k²>(k+1)² при k>5

Если 2^{k+1}2k^2, а 2k^2(k+1)^2 , при k>5

То есть, 2^{k+1}2k^2(k+1)^2 , при k>5, то по закону транзитивности:

2^{k+1}(k+1)^2 , при k>5 - ч.т.д

4,7(96 оценок)
Ответ:
Makaezhik02
Makaezhik02
26.05.2020

1. Прежде всего, разобьем это выражение на множители:

n^4+2n^3+3n^2+2n=n*(n^3+2n^2+3*n+2)

Разделив столбиком многочлен n^3+2n^2+3*n+2 на (n+1), получаем (n^2+n+2). Т.е. исходный многочлен может быть представлен в следующем виде:

n^4+2n^3+3n^2+2n=n*(n+1)*(n^2+n+2)

2. Теперь рассмотрим 2 случая:

а). Пусть n - четное число, т.е. делится на 2 без остатка, тогда

n делится на 2 без остатка;

(n+1), будучи числом нечетным, не делится на 2 без остатка;

Теперь рассмотрим n^2+n+2:

n - четное, значит n^2 - тоже четное, и n^2+n - тоже четное, т.е. делится на 2 без остатка. Т.к. n^2+n уже делится на 2 без остатка, то n^2+n+2 также еще раз разделится на 2 без остатка => (n^2+n+2)/2=((n^2+n)/2) + 2/2=((n^2+n)/2)+1.

Получаем, что исходное выражение можно три раза разделить на 2, т.е. разделить на 8.

б). Пусть n - нечетное, т.е. не делится на 2 без остатка, тогда

n не делится на 2 без остатка;

(n+1), будучи числом четным, делится на 2 без остатка;

n - нечетное, значит n^2 - тоже нечетное, а n^2+n - уже четное, т.к. к нечетному n^2 прибавляем нечетное n. И аналогично, т.к. n^2+n уже делится на 2 без остатка, то n^2+n+2 также еще раз разделится на 2 без остатка.

Получаем, что исходное выражение можно три раза разделить на 2, т.е. разделить на 8.

4,4(58 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ