294
1) 160
2) 270
295
1) 16
2) 3
296
1) 1 4/5
2) 1/35
1)49^(x+1)=7^-x
7^(2x+2)=7^-x
2x+2=-x
3x=-2
x=-2/3
ответ -2/3
22)Найдите угловой коэффициент касательной, проведенной к графику функции f(x)=x - ln x в точке с абсциссой х=3)
найдем уравнение касательной
f(3)=3-ln3
f'(x)=x-1/x
f'(3)=3-1/3=2/3
теперь само уравнение
y=3-ln3+2/3(x-3)=3-ln3+2x/3-2 =2x/3-ln3+1
ответ коэффициент равен y=kx+b
здесь к=2/3
3)
54*3^(3-x)*3^(x-3)>0
2*3^3*3^(3-x)*3^(x-3)>0
2*3^(6-x)*3 ^(x-3)>0
2*3^(6-x+x-3)>0
отудого х любое число!
4)
sin(pi+x)-cos(pi/2-x)= V3
-sinx-sinx=V3
-2sinx=V3
sinx= -V3/2
x=-pi/3+2pi*k
y= x²-4x+3
y= ax²+bx+c
a= 1, b= -4, c= 3
1) Координаты вершины параболы:
х(в)= -b/2a = -(-4)/(2*1)= 4/2=2
у(в) = 2²-4*2+3= 4-8+3=-1
V(2; -1) - вершина параболы
2) Ось симметрии параболы проходит через вершину параболы параллельно оси Оу, значит, ось симметрии можно задать уравнением х=2
3) Точки пересечения графика функции с осями координат:
с осью Оу: х=0, y(0)=0²-4*0+3=3
Значит, (0;3) - точка пересечения параболы с осью Оу
с осью Ох: у=0, x²-4x+3=0
D=(-4)²-4*3*1=16-12=4=2²
x₁=(4+2)/2=6/2=3
x₂=(4-2)/2=2/2=1
(3;0) и (1;0) - точки пересечения с осью Ох
4) Строим график функции:
Уже найдены вершина параболы и точки пересечения с осями координат. Точка (4;3) - расположена симметрично точке (0;3) относительно оси симметрии параболы
5) По рисунку видно, что график функции находится в I, II и IV четвертях.
Кто автор книги скажи