a) (x+2)+(x - 2)= x+2+x - 2=2х - раскрыли скобки, т.е. просто опустили и привели подобные.
б) (2x - 3y)*(2x +34)=4х²+68х-6ху-102у
в) (b² +4)*(4-b²)=(4+b² )*(4-b²)=4²-(b²)²=16-b⁴- при возведении степени в степень мы перемножаем показатели. как здесь 2*2=4.
г) (y+3)*(y-3)=у²-9
д) (3a-3y)*(2x+3y)=6ах+9ау-6ху-9у²
е) (b²+4)*(4-b²)=) (4+b²)*(4-b²)=16-b⁴
в номерах в), г), е) использовали формулу разности квадратов. т.е.
(а-с)*(а+с)=а²-с², в остальных б) , д), просто раскрывали скобки по распределительному закону, т.е. умножали все члены первой скобки на все члены второй
4) √61
Объяснение:
Чтобы определить который из заданных чисел принадлежит промежутку [7; 8] необходимо сравнивать числа с границей промежутка. Но заданные числа иррациональные и поэтому будем сравнивать квадраты чисел с квадратом границ промежутка:
7²=49, 8²=64.
1) (√7)² = 7 и 7<49<64, что означает: √7 не принадлежит промежутку [7;8];
2) (√8)² = 8 и 8<49<64, что означает: √8 не принадлежит промежутку [7;8];
3) (√42)² = 42 и 42<49<64, что означает: √42 не принадлежит промежутку [7;8];
4) (√61)² = 61 и 49≤61≤64, что означает: √61 принадлежит промежутку [7;8].
Объяснение: