Разложим знаменатель на множители:
Сумма коэффициентов равна нулю, значит корни уравнения 1 и -1/3.
Интеграл примет вид:
Разложим дробь, стоящую под знаком интеграла, на составляющие:
Дроби равны, знаменатели равны, значит равны и числители:
Многочлены равны, когда равны коэффициенты при соответствующих степенях. Составим систему:
Выразим из второго уравнения А:
Подставляем в первое и находим В:
Находим А:
Сумма принимает вид:
Значит, интеграл примет вид:
Для второго слагаемого выполним приведение под знак дифференциала:
Интегрируем:
Упрощаем:
Применим свойство логарифмов:
Первую ещё не придумала, а вот вторая:
Чтобы найти вероятность того, что точка,брошенная в круг, попадёт в треугольник, надо найти отношение площади правильного треугольника к площади окружности
S(треуг)=(а:2*корень(3))/ S 4
S(окруж)=Pі *r^2
Мы знаем связь между стороной правильного треугольника и радиусом описаной окружности:
r=a/корень3
Тогда, вероятность = S(треуг)/ S(окруж)= ((а:2*корень(3))/ S 4) / (Pі *r^2) = ((а:2*корень(3))/ S 4) * (Pі *а^2) /3=(3*корень3)/ 4Pі
Если надо, можно примерно вищитать:
(3*корень3)/ 4Pі = 3*1,73/4*3,14=5,19/12,56=0,41
ответ:0,41
решение на фотографии