Задание № 4:
В двух корзинах 79 яблок, причём 7/9 первой корзины составляют зелёные яблоки, а 9/17 второй корзины - красные яблоки. Сколько красных яблок во второй корзине?
получаем, что яблок в первой корзине делится на 9, а число яблок во второй корзине делится на 17
9х+17у=79
х=1: 9+17у=79; 17у=70; у не целое
х=2: 18+17у=79; 17у=61; у не целое
х=3: 27+17у=79; 17у=52; у не целое
х=4: 36+17у=79; 17у=43; у не целое
х=5: 45+17у=79; 17у=34; у=2
х=6: 54+17у=79; 17у=25; у не целое
х=7: 63+17у=79; 17у=16; у<1
значит в первой корзине 9*5=45 яблок, во второй - 17*2=34, (9/17)*34=18 красных яблок
ответ: 18
Задание № 4:
Стоимость билета в кино была 1200 рублей. После снижения стоимости количество посетителей увеличилось 1,5 раза и сбор увеличился на 25%. На сколько рублей была снижена стоимость билета? Дайте ответ в рублях.
пусть цену билета снизили на часть, равную, то есть цена стала 1200(1-х), соответственно разница между стоимостями 1200х
изначально было n посетителей
после - стало 1,5n
изначальный сбор 1200*n
после - стал 1200(1-х)*1,5n
и новый сбор в 1,25 раза больше старого
1200(1-х)*1,5n=1,25*1200*n
1200(1-х)*1,5=1,25*1200
(1-х)*1,5=1,25
1-х=5/6
х=1/6
1200х=1200*1/6=200
ответ: 200
cos2x+3sin2x=3
Попробуем открыть по формуле cos2x=cos^2x-sin^2x подставим
cos^2x-sin^2x+3sin2x=3
опять sin2x откроем по формуле sin2x=2sinx*cosx подставим
cos^2x-sin^2x +3(2sinx*cosx)=3
cos^2x-sin^2x+6sinx*cosx =3
вспомним что cos^2x=1-sin^2x подставим
1-sin^2x-sin^2x+6V(1-sin^2x)*sinx=3
1-2sin^2x+6V(1-sin^2x)*sinx =3
-2sin^2x+6V(1-sin^2x) *sinx=2
поделим на 2
-sin^2x+3V(1-sin^2x)*sinx=1
3V(1-sin^2x)*sinx=1+sin^2x
можно заменить sinx=t тогда
3V(1-t^2)t=1+t^2
возмедем обе части в квадрат
9t^2(1-t^2)=1+2t^2+t^4
9t^2-9t^4=1+2t^2+t^4
t^4+9t^4+2t^2-9t^2+1 =0
10t^4-7t^2+1=0
биквдатратное уравнение опять заменим на t^2=a
10a^2-7a+1=0
D=49-4*10*1=V9=3
a1=7+3/20=1/2
a2=7-3/20=1/5
a=t^2
t^2=1/2
t=V2/2
t=1/5
t=1/V5
t=sinx
sinx=V2/2
x=pi/4
sinx=1/V5
x=-1arcsin(1/V5)+2pi*k