Два фермера, работая вместе, могут вспахать поле за 25 часов.
Производительность труда у первого и второго относятся как 2:5.
Фермеры планируют работать поочередно.
Сколько времени должен проработать второй фермер, чтобы поле было вспахано за 45,5 часов?
Пусть Х-производительность 1-го, У-производительность 2-го.
Система:
х+у=125
2х=5у
Последовательно:
2х+2у=2/25
2х-5у=0
7у=2/25 и у=2175
Тогда х=135
Итак, производительности мы нашли.
Поочередно фермеры работали 45,5 часа = 91/2 часа.
Пусть из этого времени 2-ой работал Т часов, тогда 1-ый работал 912-Т часов.
Уравнение:
(91/2-Т)⋅(1/35)+Т⋅(2/175)=1
имеет корень Т=17,5
Проверка.
1. проверим , что х+у=125
1/35+2/175=(70+175)/(175⋅35)=7/175=1/25
2. проверим, что 2х=3у:
2/35=5⋅2/175
3. Проверим уравнение при поочередной работе:
Если 2-ой работал 17,5 часов, то 1-ый работал 45,5-17,5=28 часов
28⋅135+(352)⋅(2175)=28/35+1/5=1
ОТВЕТ: 17,5
1) У выражение 2x - 3 - (5x - 4). Для этого откроем скобки и приведем подобные слагаемые. Для открытия скобок будем использовать правило открытия скобок перед которыми стоит знак минус.
2x - 3 - (5x - 4) = 2x - 3 - 5x + 4 = 2x - 5x + 4 - 3 = x(2 - 5) + 1 = -3x + 1.
ответ: -3x + 1.
2) Зависит ли от значения х значение выражения 3(2x - 1) - 2(5x - 4) - (2 - 4x)?
Открываем скобки и приводим подобные:
3(2x - 1) - 2(5x - 4) - (2 - 4x) = 6x - 3 - (10x - 8) - 2 + 4x = 6x - 3 - 10x + 8 - 2 + 4x = 6x + 4x - 10x - 3 + 8 - 2 = 3. Выражение не зависит от переменной.
Объяснение: