Итак, первое условие выполнится, если выполнится третье, поэтому сосредоточимся на последних двух
Как видим, q обязано делиться на 2. Поэтому
Теперь и r должно делиться на 2, чтобы r^2 делилось на 4
Ну все, теперь задача найти все такие кубы , чтобы они еще были и квадратами. Тогда исходное число найдем в виде
Заметим, что область поиска ограничена, ибо
Куб числа q можно разложить на простые множители:
Чтобы это число было еще и квадратом, необходимо чтобы все степени простых чисел были еще и четными. То есть годятся 0, 6, 12 и так далее степени простых чисел. Одним словом, q_1^3 должно быть 6-й степенью некого натурального числа x, причем это число должно быть меньше 5√2≈7.07. Таких x существует ровно 7, и это ответ. Но ниже мы приведем все исходные числа
Еще раз подчеркнем, что общая формула для чисел, удовлетворяющих условиям задачи
Итак, первое условие выполнится, если выполнится третье, поэтому сосредоточимся на последних двух
Как видим, q обязано делиться на 2. Поэтому
Теперь и r должно делиться на 2, чтобы r^2 делилось на 4
Ну все, теперь задача найти все такие кубы
Заметим, что область поиска ограничена, ибо
Куб числа q можно разложить на простые множители:
Чтобы это число было еще и квадратом, необходимо чтобы все степени простых чисел были еще и четными. То есть годятся 0, 6, 12 и так далее степени простых чисел. Одним словом, q_1^3 должно быть 6-й степенью некого натурального числа x, причем это число должно быть меньше 5√2≈7.07. Таких x существует ровно 7, и это ответ. Но ниже мы приведем все исходные числа
Еще раз подчеркнем, что общая формула для чисел, удовлетворяющих условиям задачи