Сколько несократимых дробей со знаменателем 23 между числами 2,6 и 7,6 ?
2,6 < n / 23 < 7,6 ; n ∈ ℕ || *23 > 0 (умножаем двойное неравенство на 23) 2,6 *23 < n < 7,6*23 ; 59,8 < n < 174 ,8 ; но n ∈ ℕ (натуральное число) ,поэтому: 59 ≤ n ≤ 174 174 -(59-1) =174 - 58= 116 чисел среди этих чисел есть k=5 чисел кратных 23: 69,92,115,138,161. * * * 59 ≤23k ≤ 174⇔ 3 ≤ k ≤ 7 7-2 =5 чисел * * * их нужно исключить ,остается 116 - 5 =111 значений для n.
ответ : 111 (несократимых дробей со знаменателем 23 )
4(x^2 + 7x + 6)*(x^2 + 5x + 6) = -3x^2
Замена x^2 + 6x + 6 = t
4(t + x)(t - x) = -3x^2
4(t^2 - x^2) = -3x^2
4t^2 - 4x^2 + 3x^2 = 0
4t^2 - x^2 = 0
(2t - x)(2t + x) = 0
Обратная замена
(2x^2 + 12x + 12 - x)(2x^2 + 12x + 12 + x) = 0
(2x^2 + 11x + 12)(2x^2 + 13x + 12) = 0
Разложили на 2 квадратных. Решаем их отдельно.
1) 2x^2 + 11x + 12 = 0
D = 11^2 - 4*2*12 = 121 - 96 = 25 = 5^2
x1 = (-11 - 5)/4 = -16/4 = -4
x2 = (-11 + 5)/4 = -6/4 = -1,5
2) 2x^2 + 13x + 12 = 0
D = 13^2 - 4*2*12 = 169 - 96 = 73
x3 = (-13 - √73)/4
x4 = (-13 + √73)/4