Объяснение:
Чтобы упростить выражение ((x + y)/(x - y) - (x - y)/(x + y)) : xy/(x^2 - y^2) выполним сначала действие в скобках.
Приведем дроби к общему знаменателю. Для этого домножим первую дробь на (х + у), а вторую на (х - у):
(x + y)/(x - y) - (x - y)/(x + y) = ((х + y)^2 - (x - y)^2))/(x^2 - y^2) = (x^2 + 2xy + y^2 - x^2 + 2xy - y^2)/(x^2 - y^2) = 4xy/(x^2 - y^2).
Теперь выполним деление дробей. Как известно при деление дроби на дробь действие деление заменяется умножением и вторая дробь переворачивается.
4xy/(x^2 - y^2) * (x^2 - y^2)/xy = 4.
вероятность.
2. 10!
3. 26%
4. 1) 5/8 (от 6 до 9)
2) 1/36 (на грани первого — шесть, второго — пять)
3) 35/36 (хотя бы на одной грани не 6)
5. Нету количества троечников, поэтому задача нерешаема.
Объяснение:
1) После того, как нашли количество выбрать три согласных и количество выбрать одну гласную, умножаем первое на второе.
Чтобы найти вероятность составления слова "тест", сначала найдём количество комбинаций 6-и элементов по три и 5-ти элементов по 1. Далее находим вероятность найти определённую комбинацию 6-ти элементов по три и 5-ти по 1. Умножаем числа, что получили.
3) От "больше восьми" вычисляем "больше десяти" и получаем то, что искали.
4) 1) Рисуем квадрат с 36-ю квадратиками-исходами, внутри которых пишем количество очков на кубиках. Находим количество благоприятных исходов.
2) Правило умножения: P(A,B)=P(A)×P(B)=1/6*1/6=1/36
3) Условие будет не выполняться только тогда, когда на обоих кубиках будет 6. Вероятность этого — 1/36. Значит, вероятность выполнения условия — 1-1/36=35/36.
Проверка