Объяснение: Точки А, В, С лежат на ожной прямой. Найти а.
1) А(1;2), В(4;8), С(а;6)
Составим уравнение прямой АВ:
(х-х₁)/(х₂-х₁)=(у-у₁)/(у₂-у₁), ⇒ (х-1)/(4-1)=(у-2)/8-2), ⇒ (х-1)/3=(у-2)/6 ⇒6(х-1)=3(у-2), ⇒ 6х-6=3у-6, т.е. 6х=3у или у=2х (уравнение прямой, на которой лежат эти 3 точки), значит координаты точки С(а;6) удовлетворяют этому уравнению: 6=2·а, ⇒а=6:2=3, т.е. а=3
2) А(2;5), В(-1;а), С(3;7).
Аналогично составим уравнение прямой АС:
(х-2)/(3-2)=(у-5)/(7-5), ⇒х-2=(у-5)/2 ⇒2х-4=у-5 ⇒у=2х+1 (уравнение прямой, на которой лежат эти 3 точки), значит координаты точки В(-1;а) удовлетворяют этому уравнению: а=2·(-1)+1 =-1, т.е. а= -1
3) А(0;2), В(1;а), С(а;5)
Аналогично составим уравнение прямой АС: (х-0)/(а-0)=(у-2)/(5-2) ⇒
х/а=(у-2)/3 ⇒3х=а(у-2) ⇒ 3х=ау-2а ⇒ау=3х+2а ⇒у=3х/а +2 (уравнение прямой, на которой лежат эти 3 точки), значит координаты точки В(1;а) удовлетворяют этому уравнению: а= 3·1/а+2 ⇒а²=2а+3 ⇒
а²-2а-3 =0 ⇒ D=4+12=16 >0 ⇒a₁= (2+4)/2=3, a₂=(2-4)/2=-1
т.е. при а=-1 и а=3
t²-3t-4=0
D=9+16=25 > 0, значит 2 корня
t₁ = (3+5)/2=4
t₂ = (3-5)/2 = -1
сделаем обратную замену
cos x=4 - не подходит, так как E(y)= [-1;1] -область значений функции косинус
cos x=-1, x=π+2πn, n∈Z
2) 2 cos²x - 5sinx+1 =0
2(1-sin²x) -5sinx+1=0
2 - 2sin²x -5sinx+1=0
2sin²x+5sinx-3=0
введем замену sinx =t, тогда получим
2t²+5t-3=0
D=25+24=49 >0 - значит 2 корня
t₁ =(-5-7)/4=-3
t₂ =(-5+7)/4 = 1/2, введем обратную замену
sin x =-3 - не подходит, так как E(y)= [-1;1] -область значений функции синус
sinx = 1/2, х =π/6 + 2πn и x= 5π/6 + 2πn , где n∈Z