Дано: а₁=а₂+ 2 см S₁=S₂+12 см² Р₁=? см Р₂=? см Пусть сторона второго квадрата а₂=х см, тогда сторона первого квадрата равна а₁=а₂+2=х+2 см. Площадь квадрата равна S=a², значит площадь первого квадрата равна S₁=(х+2)², а площадь второго квадрата равна S₂=х². Площадь первого квадрата больше второго на 12 см². Составим и решим уравнение: (х+2)²-х²=12 х²+4х+4-х²=12 4х=12-4 4х=8 х=8:4 х=2 (см) - сторона второго квадрата (а₂). х+2=2+2=4 (см) - сторона первого квадрата (а₁). Периметр квадрата равна Р=4а. Периметр первого квадрата равен: Р₁=4а₁=4*4=16 см Периметр второго квадрата равен: Р₂=4а₂=4*2=8 см ответ: 16 см и 8 см.
Особый вид средних величин - структурные средние - применяется для изучения внутреннего строения рядов распределения значений признака, а также для оценки средней величины (степенного типа), если по имеющимся статистическим данным ее расчет не может быть выполнен. В качестве структурных средних чаще всего используют показатели моды - наиболее часто повторяющегося значения признака - и медианы - величины признака, которая делит упорядоченную последовательность его значений на две равные по численности части. В итоге у одной половины единиц совокупности значение признака не превышает медианного уровня, а у другой - не меньше его. Если изучаемый признак имеет дискретные значения, то особых сложностей при расчете моды и медианы не бывает. Если же данные о значениях признака Х представлены в виде упорядоченных интервалов его изменения (интервальных рядов), расчет моды и медианы несколько усложняется. Поскольку медианное значение делит всю совокупность на две равные по численности части, оно оказывается в каком-то из интервалов признака X. С интерполяции в этом медианном интервале находят значение медианы: , где XMe - нижняя граница медианного интервала; hMe - его величина; am/2- половина от общего числа наблюдений или половина объема того показателя, который используется в качестве взвешивающего в формулах расчета средней величины (в абсолютном или относительном выражении); SMe-1 - сумма наблюдений (или объема взвешивающего признака), накопленная до начала медианного интервала; mMe - число наблюдений или объем взвешивающего признака в медианном интервале (также в абсолютном либо относительном выражении). При расчете модального значения признака по данным интервального ряда надо обращать внимание на то, чтобы интервалы были одинаковыми, поскольку от этого зависит показатель повторяемости значений признака X. Для интервального ряда с равными интервалами величина моды определяется как
где ХMo - нижнее значение модального интервала; mMo - число наблюдений или объем взвешивающего признака в модальном интервале (в абсолютном либо относительном выражении); mMo-1 - то же для интервала, предшествующего модальному; mMo+1 - то же для интервала, следующего за модальным; h - величина интервала изменения признака в группах.2.Понятие об ошибке выборки Методы расчета ошибки выборки. Под выборочным наблюдением понимается несплошное наблюдение, при котором статистическому обследованию (наблюдению) подвергаются единицы изучаемой совокупности, отобранные случайным Выборочное наблюдение ставит перед собой задачу – по обследуемой части дать характеристику всей совокупности единиц при условии соблюдения всех правил и принципов проведения статистического наблюдения и научно организованной работы по отбору единиц. После проведения отбора для определения возможных границ генеральных характеристик рассчитываются средняя и предельная ошибки выборки. Простая случайная выборка (собственно-случайная) есть отбор единиц из генеральной совокупности путем случайного отбора, но при условии вероятности выбора любой единицы из генеральной совокупности. Отбор проводится методом жеребьевки или по таблице случайных чисел.Типическая (стратифицированная) выборка предполагает разделение неоднородной генеральной совокупности на типологические или районированные группы по какому-либо существенному признаку, после чего из каждой группы производится случайный отбор единиц.
1. Из вершины тупого угла опустим высоту на основание. Надо найти эту высоту, чтобы узнать площадь. Будем надеятся, что формула площади тебе изваестна: )
В полученном прямоугольнм треугольнике один из катетов равен 7V3 (семь корнрй из трех ), т. к. высота в данном случае явл. и медианой, т. к. тр-к равноведренный
Второй катет (он же высота) равен половине гипотенузы этого треугольника, т. к. лежит против угла в 30 градусов. (углы при основании равноведренного тр-ка равны (180- 120): 2= 30 )
По теореме Пифагора находим высоту. Если высоту обозначить Х, то уравнение будет выглядеть так:
а₁=а₂+ 2 см
S₁=S₂+12 см²
Р₁=? см
Р₂=? см
Пусть сторона второго квадрата а₂=х см, тогда сторона первого квадрата равна а₁=а₂+2=х+2 см.
Площадь квадрата равна S=a², значит площадь первого квадрата равна S₁=(х+2)², а площадь второго квадрата равна S₂=х². Площадь первого квадрата больше второго на 12 см².
Составим и решим уравнение:
(х+2)²-х²=12
х²+4х+4-х²=12
4х=12-4
4х=8
х=8:4
х=2 (см) - сторона второго квадрата (а₂).
х+2=2+2=4 (см) - сторона первого квадрата (а₁).
Периметр квадрата равна Р=4а.
Периметр первого квадрата равен: Р₁=4а₁=4*4=16 см
Периметр второго квадрата равен: Р₂=4а₂=4*2=8 см
ответ: 16 см и 8 см.