 
                                                 
                                                По определению, 
Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение 
2) 

А значит, если взять ![N=\left[\dfrac{|a|}{\varepsilon}\right] +1](/tpl/images/3820/0626/0d89e.png) (*),
 (*),  . И правда:
. И правда: 
(*) Очевидно, что для любого допустимого значения  выражение
 выражение ![\left[\dfrac{|a|}{\varepsilon}\right] +1](/tpl/images/3820/0626/ae843.png) определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
А это и означает, что предел данной последовательности равен 0
4)  

 
А значит, если взять ![N=\left[\dfrac{3}{\varepsilon}\right] +1](/tpl/images/3820/0626/a4ca4.png) (**),
 (**),  . И правда:
. И правда: ![\dfrac{|2+(-1)^n|}{\varepsilon}\leq\dfrac{3}{\varepsilon}< \left[\dfrac{3}{\varepsilon}\right] +1=N\leq n \Rightarrow \dfrac{|2+(-1)^n|}{\varepsilon}< n \Rightarrow |x_n|](/tpl/images/3820/0626/49458.png)
(**) Очевидно, что для любого допустимого значения  выражение
 выражение ![\left[\dfrac{3}{\varepsilon}\right] +1](/tpl/images/3820/0626/698f8.png) определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
А это и означает, что предел данной последовательности равен 0
___________________________
2) a=1. Тогда 
4)
 
___________________________
Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x. 
 
                                                
ответ:
а) корни: y1=(5, 0) у2=(-10, 0)
б) х=9/2 или 4 1/2 или 4,5; корни: y1=(-6, 0) у2=(15, 0)
объяснение
а) y1=(x-5)^2 область определения x ∈ r
минимум (5, 0)
пересечение с осью координат (0, 25)
y2=(x+10)^5 область определения x ∈ r
пересечение с осью координат (0, 100000)
б) (x+6)^2=(15-x)^2
√(x+6)^2=√(15-x)^2
|x+6| = |15-x|
x+6 = 15-x x+6 = -(15-x)
x+x+6 = 15 x+6 = -15+x → сокращаем иксы
x+x = 15-6 6 = -15
2x = 9 x ∈ ∅
х=9/2
y1=(x+6)^2 область определения x ∈ r
минимум (-6, 0)
пересечение с осью координат (0, 36)
y2=(15-х)^2 область определения x ∈ r
минимум (15, 0)
пересечение с осью координат (0, 225)