У нас всего может выпасть 16( 2 в четвёртой, т.к. за каждый бросок количество комбинаций удваивается - 0 бросков - 1 комбинация, т.е. её просто нет, 1 бросок - 2 комбинации - орёл или решка, 2 броска - 4 комбинации: о-о, о-р,р-о, р-р и т. д.) комбинаций. Комбинаций, в которых орёл выпадает ровно 2 раза, 6 - монета выпадает орлом: 12,13,14,23,24,34(1,2,3,4 - номера бросков)(к слову, комбниаций, когда выпадает орёл ровно 3 раза - 4: 123,124,134,234, когда 1 раз - тоже 4 - 1,2,3,4, когда все 4 раза или не выпадет - по 1 разу(1234 и, соответственно, 0). 6+4+4+1+1=16), вероятность того, что орёл выпадет ровно 2 раза, рвна 6/16=3/8=0.375
ответ:
x∈(-∞, -1-√11)∪(-2, 2)∪(1+√11, +∞)
объяснение:
|x²-9|> 2|x|+1
рассмотреть все возможные случай:
|x²-9|-2|x|> 1
решим систему неравенств 4 случая:
x²-9-2x> 1, x²-9≥0, x≥0
-(x²-9)-2x> 1, x²-9< 0, x≥0
x²-9-2×(-x)> 1, x²-9≥0, x< 0
-(x²-9)-2×(-x)> 1, x²-9< 0, x< 0
решим неравенств относительно x:
x∈(-∞, 1-√11)∪(1+√11, +∞), x∈(-∞, -3]∪[3, +∞), x≥0
x∈(-4, 2), x∈(-3, 3), x≥0
x∈(-∞, -1-√11)∪(-1+√11, +∞), x∈(-∞, -3]∪[3, +∞), x< 0
x∈(-2, 4), x∈(-3,3), x< 0
найдем перечисление:
x∈(-∞, 1-√11)∪(1+√11, +∞), x∈[3, +∞)
x∈(-4, 2), x∈[0, 3)
x∈(-∞, -1-√11)∪(-1+√11, +∞), x∈(-∞, -3]
x∈(-2, 4), x∈(-3, 0)
найдем перечисление:
x∈(1+√11, +∞)
x∈[0, 2)
x∈(-∞, -1-√11)
x∈(-2, 0)
найдем объединение:
x∈(-∞, -1-√11)∪(-2, 2)∪(1+√11, +∞)