Запиши линейную функцию формулой, если известно, что её график проходит через начало координат и через точку A(−3;9). ответ: график линейной функции задаётся формулой y= x
Парабола. Направление "ветвей" зависит от коэффициента a, если он > 0, то ветви направлены вверх, если <0 - вниз. Приравняв функцию к нулю, с дискриминанта и формул корней квадратного уравнения найдем точки пересечения с осью абсцисс (Ox) Формула вершины параболы (координата по Х) -b\2a. Найдя координату по х, подставим ее в исходную функцию, получим координату по Y. (там есть отдельная формула, но кому она нужна) Для дополнительной точности можем найти значения функции в окрестностях корней, но это уже на любителя. В итоге получим что-то такое:
1. Раскрываем модуль. Если х-5>0, то (х-5)*(х+3) 2Раскрываем скобки х^2+3х-5х-15 Упрощаем, получается х^2-2х-15. Это все был первый случай, когда выражение под модулем больше нуля, теперь раскроем модуль так, если выражение под ним отрицательное 1. Раскрываем модуль. Если х-5<0, то (-х+5)*(х+3) 2. Раскрываем скобки. -х^2-3х+5х+15 Упрощаем, получается -х^2+2х+15. Все. Первое задание сделано. Аналогично решаются остальные задания. Просто нужно помнить правило раскрытия модуля. Если все-таки не понятно, или имеются затруднения - обращайтесь, постараюсь
Направление "ветвей" зависит от коэффициента a, если он > 0, то ветви направлены вверх, если <0 - вниз.
Приравняв функцию к нулю, с дискриминанта и формул корней квадратного уравнения найдем точки пересечения с осью абсцисс (Ox)
Формула вершины параболы (координата по Х) -b\2a. Найдя координату по х, подставим ее в исходную функцию, получим координату по Y. (там есть отдельная формула, но кому она нужна)
Для дополнительной точности можем найти значения функции в окрестностях корней, но это уже на любителя. В итоге получим что-то такое: