x₁ = 2 + , y₁ = 2
- 3;
x₂ = 2 -, y₂ = - 3 - 2
:
Объяснение:
{ху - х = 4
{2х - у = 7
Выразим y и подставим во второе уравнение
{xy - x = 4
{-y = 7 - 2x
Уберём минус перед y, помножив выражение на (-1)
{xy - x = 4
{y = 2x - 7
Подставляем полученное выражение вместо y
x * (2x - 7) - x = 4
2x² - 7x - x =4
2x² - 8x - 4 = 0
Получаем квадратное уравнение. Сокращаем коэффиценты, деля обе стороны на 2
x² - 4x - 2 = 0
У нас a = 0. По теореме Виета: x₁ + x₂ = −b; x₁ * x₂ = c;
Но для начала проверим дискриминант
D = b² - 4ac
D = 16 - 4 * 1 * (-2)
D = 16 + 8 = 24
Нет такого натурального числа, которое было бы квадратным корнем из 24, поэтому мы не сможем решить теоремой Виета, и продолжаем решать дискриминантом
x₁,₂ =
x₁ = =
= 2 +
x₂ = =
= 2 -
Находим y, подставляя x
2 * (2 + ) - y₁ = 7
4 + 2 - y₁ = 7
- y₁ = 3 - 2
Убираем минус
y₁ = 2 - 3
Ищем y₂
2 * (2 - ) - y₂ = 7
4 - 2 - y₂ = 7
- y₂ = 3 + 2
Снова убираем минус
y₂ = - 3 - 2
ответ: x₁ = 2 + , y₁ = 2
- 3; x₂ = 2 -
, y₂ = - 3 - 2
;
a² - 5a + 4 = 0
a² - 4a - a + 4 = 0
a(a - 4) - (a - 4) = 0
(a - 1)(a - 4) = 0
a = 1; a = 4
x + y = 1; x + y = 4
b² - b - 2 = 0
b² + b - 2b - 2 = 0
b(b + 1) - 2(b + 1) = 0
(b - 2)(b + 1) = 0
b = -1; b = 2.
x - y = -1; x - y = 2
Получаем систему четырёх совокупностей:
1)
x + y = 1
x - y = -1
2x = 0
x + y = 1
x = 0
y = 1
2)
x + y = 1
x - y = 2
2x = 3
x + y = 1
x = 1,5
y = -0,5
3)
x + y = 4
x - y = -1
2x = 3
x + y = 4
x = 1,5
y = 2,5
4)
x + y = 4
x - y = 2
2x = 6
x + y = 4
x = 3
y = 1
Все системы решены алгебраическим сложением
ответ: (0; 1), (1,5; -0,5), (1,5; 2,5), (3; 1).