В решении.
Объяснение:
Найдите целые решения неравенства: х²-4х-5<0;
Приравнять к нулю и решить квадратное уравнение:
х² - 4х - 5 = 0
D=b²-4ac =16 + 20 = 36 √D=6
х₁=(-b-√D)/2a
х₁=(4-6)/2
х₁= -2/2
х₁= -1;
х₂=(-b+√D)/2a
х₂=(4+6)/2
х₂=10/2
х₂=5.
Уравнение квадратичной функции, график - парабола, ветви направлены вверх, пересекают ось Ох в точках х= -1 и х=5.
Решение неравенства: х∈(-1; 5).
Неравенство строгое, значения х= -1 и х= 5 не входят в решение, поэтому целые решения неравенства: 0; 1; 2; 3; 4.
6x+3=5x-4(5y+4);
3(2x-3y)-6x=8-y;
Раскрываем скобки по распределительному закону умножения.
6х+3=5х-20у-16;
6х-9у-6х=8-у;
Переносим члены уравнения с неизвестным в левую часть, а известные в правую часть при этом изменяем знак каждого члена на противоположный.
6х-5х+20у=-3-16;
6х-9у-6х+у=8;
Приводим подобные члены уравнения в обеих частях уравнения.
х+20у=-19;
-8у=8;
Находим переменную у во втором уравнении.
х+20у=-19;
у=8:(-8);
х+20у=-19;
у=-1;
Подставляем значение переменной у в первое уравнение.
х+20*(-1)=-19;
х-20=-19;
х=-19+20;
х=1;
ответ: (1;-1).
Объяснение:
Пусть 1 число будет х, тогда второе х-7
х(х-7)=330
х^2-7х=330
х^2-7х-330=0
D=49+1320=1369 корень (1368) = 7
х1=(7-37)/2=-15
х2=(7+37)/2=22
второй корень=22
первый корень=15