уравнение с параметром просто как и в обыкновенном кв. уравнинии вот найди дискриминант и корни уравн
дискриминант=4a^2-4(a-2)(2-3a)=4a^2-4(2a-3a^2-4+6a)=4a^2-8a+12a^2+16-24a=16a^2-32a+16=(4a-4)^2
-2a+корень из (4a-4)^2 -2a+4a-4 2a-4
x1====1
2(a-2) 2a-4 2a-4
первый корень x1=1
-2a-корень из (4a-4)^2 -2a-4a+4 -6a+4 2(-3a+2) 2-3a
x2=== =
=
2(a-2) 2(a-2) 2(a-2)
Система не имеет решений, значит графики не пересекаются.
Графики не пересекаются, значит прямые параллельны.
Надо ответить на вопрос, когда прямые параллельны.
Когда их коэффициенты при х и у пропорциональны
2:1=(-1):а
а=-0,5
Но параллельные прямые могут совпасть, чтобы этого не случилось, надо чтобы отношение свободных коэффициентов не было пропорционально отношению коээфициентов при х и у.
В нашем случае это так
2:1≠5:2
ответ. а=-0,5