М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
flillen
flillen
17.02.2022 18:08 •  Алгебра

Определите какое из уравнений является приведённым квадратным уравнением: x+3x^2-7=0
3x^2-6x+12=0
7x+x2-3=0
-x^2+6x-1=0​

👇
Ответ:
ffggghhhd
ffggghhhd
17.02.2022

Квадратное уравнение имеет вид ax^2 + bx + c = 0. Приведённым оно является, если a=1.

x + 3x^2 - 7 = 0\ \ \Rightarrow\ 3x^2 + x - 7 = 0  -  a = 3, приведённым НЕ ЯВЛЯЕТСЯ.

3x^2 - 6x + 12 = 0  -  a =3, приведённым НЕ ЯВЛЯЕТСЯ.

7x + x^2 - 3 = 0\ \ \Rightarrow\ x^2+7x-3=0  -  a = 1, ПРИВЕДЁННОЕ уравнение.

-x^2 + 6x - 1 = 0  -  a = -1, приведённым НЕ ЯВЛЯЕТСЯ.

4,7(66 оценок)
Открыть все ответы
Ответ:
AndrewGuyGuyson
AndrewGuyGuyson
17.02.2022

Объяснение:

Средняя линия:  EF = 5,5√5 ед.

Площадь трапеции: Sabcd = 82,5 ед²

Объяснение:

Найдем длины (модули) отрезков:

|АВ| = √((Xb-Xa)²+(Yb-Ya)²) = √((-1-(-9))²+(5-1)²) = √80 = 4√5 ед.

|BC| = √((Xc-Xb)²+(Yc-Yb)²) = √((8-(-1))²+(2-5)²) = √90 = 3√10 ед.

|CD| = √((Xd-Xc)²+(Yd-Yc)²) = √((-6-8))²+(-5-2)²) = √245 = 7√5 ед.

|АD| = √((Xd-Xa)²+(Yd-Ya)²) = √((-6-(-9))²+(-5-1)²) = √45 = 3√5 ед.

Два вектора коллинеарны (параллельны), если отношения их координат равны. В нашем случае это векторы

АВ{8;4} и CD{14;7}, так как 8/14 = 4/7.  Следовательно, основания трапеции - это отрезки АВ и CD. Меньшая из боковых сторон - AD - высота прямоугольной трапеции.

Тогда имея длины всех сторон и определив, какие из них являются основаниями, найдем:

Среднюю линию:  EF = (AB+CD)/2 = 11√5/2 = 5,5√5 ед.

Площадь трапеции: Sabcd = EF·AD = (5,5√5)·3√5 = 82,5 ед²

Или так:

Средняя линия трапеции - отрезок, соединяющий середины боковых сторон. Найдем координаты середин сторон АD и BC - точек E и F соответственно:

Е((Xa+Xd)/2; (Ya+Yd)/2) или  Е((-9-6)/2; (1-5)/2).

F((Xb+Xc)/2; (Yb+Yc)/2) или  F((-1+8)/2; (5+2)/2).  Итак, имеем точки:

E(-7,5;-2) и F(3,5;3,5). Тогда длина средней линии равна:

|EF| = √((Xf-Xe)²+(Yf-Ye)²) = √((3,5-(-7,5))²+(3,5-(-2))²) = √151,25 ед.

Или EF = √151,25 = 5,5√5 ед.

Площадь трапеции равна средней линии, умноженной на высоту.

Sabcd = EF·AD = 5,5√5·3√5 = 3·27,5 = 82,5 ед².

4,6(64 оценок)
Ответ:
sapesalex
sapesalex
17.02.2022

#1

а)

 {(y^{10})}^{6} \times { {(y}^{5})}^{5} \times ( { {(y}^{3})}^{2} = \\ = {y}^{60} \times {y}^{25} \times {y}^{6} = {y}^{91}

б)

 {27}^{3} \times {3}^{6} \times {81}^{4} = {3}^{9} \times {3}^{6} \times {3}^{16} = \\ = {3}^{31}

в)

( \frac{x - y}{x + y} )^{6} \div ( \frac{x + y}{x - y} )^{4} \times ( \frac{x + y}{x - y} )^{11} = \\ = ( \frac{x - y}{x + y} )^{6} \div ( \frac{x + y}{x - y})^{4} \times ( \frac{x - y}{x + y})^{ - 11} = \\ = ( \frac{x - y}{x + y})^{ - 5} \div ( \frac{x + y}{x - y} )^{4} = \\ = {( \frac{x + y}{x - y})}^{5} \div ( \frac{x + y}{x - y} )^{4} = \\ = \frac{x + y}{x - y}

г)

 {8}^{9} \div 16^{3} \times {128}^{3} \div {64}^{2} = {2}^{27} \div {2}^{12} \times {2}^{21} \div {2}^{12} = \\ = {2}^{24}

4,6(10 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ