Площадь-это произведение сторон прямоугольника, периметр-это сумма сторон прямоугольника. В связи с этим и предлагаемыми данными можно составить 2 уравнения, соответствующие площади газона: х*у=56 и его периметру: х+х+у+у=30 Где х - ширина газона, а у - длина газона Мы получили систему из 2х уравнений: х*у=56 х+х+у+у=30
Немного упросим её, приведя подобные слагаемые: х*у=56 2х+2у=30 Выразим из второго уравнения, к примеру, х и подставим полученное выражение в первое уравнение системы: 2х=30-2у Данное уравнение можно разделить на 2, от этого результат не изменится, получим: х=15-у
Подставляем в первое уравнение системы: (15-у)*у=56 Раскрываем скобки: 15у-у²=56 Получаем квадратное уравнение: -у²+15у-56=0 Или: у²-15у+56=0 Решаем его относительно у: Накладываем условие, что у>0 (так же, как и х), потому что длина не может быть отрицательной: Д=(-15²)-4*1*56=225-224=1 у1=(15+1):2=16:2=8 м - длина газона 1 у2=(15-1):2=14:2=7м - длина газона 2
Теперь найдём соответствующую каждой длине газона ширину, вспомнив выраженноую нами переменную х: х=15-у х1=15-8=7 м - ширина газона 1 х2=15-7=8 м - ширина газона 2
1)arcsin 0 =0
2)arccos 1= 0 ;
3)arcsin√2/2 =π/4 ;
4)arccos 3 не существует угол косинус которой =3 ;
5)arcsin (-1) = -π/2 ;
6)arccos(-√3/2) = π -π/6 = 5π/6 ;
7)arctg 0 = 0 ;
8)arctg 1 =π/4 ;
9)arctg(-√3) = - π/3 ;
10)arcctg(-√3/3) = π -π/3= 2π/3 ;
11)arcsin(-1/2)+arccos 1 = -π/6 +0 = -π/6 ;
12) (arcsin -1)/2+ arccos 1 = -π/4+0= -π/4;
13)cos ( arccos 1) =1;
14)sin(arcsin√2/2) =√2/2 ;
15)arcsin (sin π/4) =arcsin(√2/2) =π/4 ;
16)arccos ( cos(-π/4))=arccos ( cos(π/4))=arccos (√2/2))=π/4 ;
17)cos (arcsin(-1/3))=cos(arccos(√8/3)= √8/3 =2√2/3 ;
18)tg(arccos(-1/4)) =tq(arctq(-√15) = - √15; 1+tq²α= 1/cos²α
19)sin(arcctg(-2)) =sin(arcsin(1/√5)=1/√5 ;
20) arcsin(cos π/9) =arcsin(sin(π/2 - π/9))=arcsin(sin7π/18) =7π/18 .
Подробнее - на -
Объяснение: