М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
lisablida
lisablida
16.06.2020 07:09 •  Алгебра

.найдите координаты точки пересечения функции у= 5/ 6 x - 25​

👇
Ответ:
lera645
lera645
16.06.2020

Точка пересечения с Ох (30;0)

Точка пересечения с Оу (0;-25)

4,5(75 оценок)
Открыть все ответы
Ответ:
mpavl8628
mpavl8628
16.06.2020
Выражение: (-4*a*b^3*2.5*a^2)*(-4*a*b^3)*c^2*3*b^3
ответ: 120*a^4*b^9*c^2
Решаем по действиям:1. 4*2.5=10  X2.5   _ _4_  10 2. a*a^2=a^3  a*a^2=a^(1+2)  2.1. 1+2=3      +1       _2_       33. (-10*a^3*b^3)*(-4*a*b^3)=-10*a^3*b^3*(-4*a*b^3)4. 10*a^3*b^3*(-4*a*b^3)=-10*a^3*b^3*4*a*b^35. 10*4=40  X10   _4_ _   406. a^3*a=a^4  a^3*a=a^(3+1)  6.1. 3+1=4      +3       _1_       47. b^3*b^3=b^6  b^3*b^3=b^(3+3)  7.1. 3+3=6      +3       _3_       68. -(-40*a^4*b^6)=40*a^4*b^69. 40*3=120  X40   _3_ _  12010. b^6*b^3=b^9  b^6*b^3=b^(6+3)  10.1. 6+3=9      +6       _3_       9
Решаем по шагам:1. (-10*a*b^3*a^2)*(-4*a*b^3)*c^2*3*b^3  1.1. 4*2.5=10      X2.5       _ _4_      10 2. (-10*a^3*b^3)*(-4*a*b^3)*c^2*3*b^3  2.1. a*a^2=a^3      a*a^2=a^(1+2)    2.1.1. 1+2=3          +1           _2_           33. (-10*a^3*b^3*(-4*a*b^3))*c^2*3*b^3  3.1. (-10*a^3*b^3)*(-4*a*b^3)=-10*a^3*b^3*(-4*a*b^3)4. (-(-10*a^3*b^3*4*a*b^3))*c^2*3*b^3  4.1. 10*a^3*b^3*(-4*a*b^3)=-10*a^3*b^3*4*a*b^35. (-(-40*a^3*b^3*a*b^3))*c^2*3*b^3  5.1. 10*4=40      X10       _4_ _       406. (-(-40*a^4*b^3*b^3))*c^2*3*b^3  6.1. a^3*a=a^4      a^3*a=a^(3+1)    6.1.1. 3+1=4          +3           _1_           47. (-(-40*a^4*b^6))*c^2*3*b^3  7.1. b^3*b^3=b^6      b^3*b^3=b^(3+3)    7.1.1. 3+3=6          +3           _3_           68. 40*a^4*b^6*c^2*3*b^3  8.1. -(-40*a^4*b^6)=40*a^4*b^69. 120*a^4*b^6*c^2*b^3  9.1. 40*3=120      X40       _3_ _      12010. 120*a^4*b^9*c^2  10.1. b^6*b^3=b^9      b^6*b^3=b^(6+3)    10.1.1. 6+3=9          +6           _3_           9
4,5(13 оценок)
Ответ:
VladKot133
VladKot133
16.06.2020
Для начала найдём частные производные 1-ого порядка. Всего их 3(т.к. 3 переменные).

u'_x=(xz*tg\sqrt{y})'_x=z*tg\sqrt{y}
u'_y=(xz*tg\sqrt{y})'_y=xz*\frac{1}{cos^2\sqrt{y}}*(\sqrt{y})'=\frac{xz}{2\sqrt{y}*cos^2(\sqrt{y})}\\u'_z=(xz*tg\sqrt{y})'_z=xtg\sqrt{y}

Когда мы считаем производную по какой-то переменной, то мы считаем что все остальные переменные независимые. К примеру:
w=2x\rightarrow w'_x=2\\w=yx\rightarrow w'_x=y\ \ \ (w'_y=x)\\w=y+x\rightarrow w'_x=1\ \ \ (w'_y=1)
Грубо говоря когда мы ищем производную по x, мы считаем что у это какое-то число. Надеюсь это понятно.

Теперь частные производные второго порядка.
Рассмотрим производную по х. Во второй раз мы может взять её опять же  по 3 переменным.
u''_{x^2}=(z*tg\sqrt{y})'_x=0\\u''_{xy}=(z*tg\sqrt{y})'_y=\frac{z}{2\sqrt{y}*cos^2\sqrt{y}}\\u''_{xz}=(z*tg\sqrt{y})'_z=tg\sqrt{y}

Теперь рассматриваем производную по у. Её  2-уй производную берём снова по 3-ём переменным.
u''_{yx}=(\frac{xz}{2\sqrt{y}*cos^2(\sqrt{y})})'_x=\frac{z}{2\sqrt{y}*cos^2(\sqrt{y})}

u''_{y^2}=(\frac{xz}{2\sqrt{y}*cos^2(\sqrt{y})})'_y=\frac{(xz)'_y*2\sqrt{y}*cos^2(\sqrt{y})-xz*(2\sqrt{y}*cos^2(\sqrt{y}))'_y}{(2\sqrt{y}*cos^2(\sqrt{y}))^2}=\\=\frac{-2xz*(\frac{1}{2\sqrt{y}}*cos^2(\sqrt{y})+\sqrt{y}*2cos(\sqrt{y})*(-sin\sqrt{y})*\frac{1}{2\sqrt{y}})}{4ycos^4(\sqrt{y})}=\\=\frac{-2xz*\frac{cos\sqrt{y}}{2\sqrt{y}}(cos(\sqrt{y})-2\sqrt{y}sin(\sqrt{y}))}{4ycos^4(\sqrt{y})}=\frac{-xz(cos(\sqrt{y})-2\sqrt{y}sin(\sqrt{y}))}{4\sqrt{y^3}cos^3(\sqrt{y})}\\

u''_{yz}=(\frac{xz}{2\sqrt{y}*cos^2(\sqrt{y})})'_z=\frac{x}{2\sqrt{y}*cos^2(\sqrt{y})}

Заметим что:
u''_{xy}=u''_{yx}
Такие равенства выполняются и для других смешанных производный, то есть:u''_{xz}=u''_{zx}

И наконец рассмотрим производную по z. Опять же 3 варианта. Но теперь мы воспользуемся равенством рассмотренным выше.
u''_{zx}=u''_{xz}=tg\sqrt{y}\\u''_{zy}=u''_{yz}=\frac{x}{2\sqrt{y}*cos^2(\sqrt{y})}\\u''_{z^2}=(xtg(\sqrt{x}))'_z=0

Ну вот и всё. Будут вопросы - спрашивайте.
4,7(29 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ