Пусть первое число равно х, тогда второе число равно (17 - х). Квадрат первого числа равен х^2, а квадрат второго числа равен (17 - х)^2. По условию задачи известно, что сумма квадратов этих двух чисел равна (х^2 + (17 - х)^2) или 185. Составим уравнение и решим его.
Если вы хотите решить уравнение, в котором переменная (х) имеет степень больше единицы, то записывать его следует так: 2x^3+3x^2+4=0 Систему линейных уравнений следует записывать через запятую: x+y=10, x-y=4 Уравнения из системы следует записать через запятую, например x^3 + 2x^2 + 5 = 0, 3х=0 Для решения уравнения с параметром следует воспользоваться оператором solve. Например: 2x3+ax+6=0 решаем относительно x, тогда запись будет такой solve 2x^3+ax+6=0 for x Если вы хотите решить неравенство, то его следует записать так: | |4x-2|-7<3 Запись тригонометрических уравнений выполняется так: sin x + cos x = 1
Пусть первое число равно х, тогда второе число равно (17 - х). Квадрат первого числа равен х^2, а квадрат второго числа равен (17 - х)^2. По условию задачи известно, что сумма квадратов этих двух чисел равна (х^2 + (17 - х)^2) или 185. Составим уравнение и решим его.
х^2 + (17 - х)^2 = 185;
х^2 + 289 - 34х + х^2 = 185;
2х^2 - 34х + 289 - 185 = 0;
2х^2 - 34х + 104 = 0;
х^2 - 17х + 52 = 0;
D = b^2 - 4ac;
D = (-17)^2 - 4 * 1 * 52 = 289 - 208 = 81; √D = 9;
x = (-b ± √D)/(2a);
x1 = (17 + 9)/2 = 26/2 = 13 - первое число;
х2 = (17 - 9)/2 = 8/2 = 4 - первое число;
17 - х1 = 17 - 13 = 4 - второе число;
17 - х2 = 17 - 4 = 13 - второе число.