task/30647175 Решить уравнение √(3x²- 4x+15) +√(3x²- 4x+8) = 7
решение ОДЗ : x ∈ ( - ∞ ; ∞ ) , т.к.
3x²- 4x+8=3(x -2/3)²+20/3 ≥ 20/3 > 0 || D₁=2² -3*8 = -24 < 0 || следовательно и 3x²- 4x+15 = ( 3x²- 4x+8 ) + 7 > 0 * * * 3(x -2/3)² +41/3 ≥ 41/3 * * *
замена : t = 3x²- 4x+ 8 ≥ 20/3 ; √(t +7) + √t =7 ⇔√( t +7 ) = 7 - √t
возведем обе части уравнения √( t +7 ) = 7 - √t в квадрат
* * * необходимо 7 - √t ≥ 0 ⇔ √t ≤ 7 ⇔ 0 ≤ t ≤ 49 * * *
t +7 = 49 -14√t + t ⇔ 14√t = 42 ⇔ √t =3 ⇔ t = 9 || 7 - √t = 4 >0 ||
3x²- 4x+8 = 9 ⇔ 3x²- 4x -1 =0 ; D₁ = 2² -3*(-1) =7= (√7)²
x₁ =(2 -√7) / 3 ; x₂ = (2+√7)/3 .
ответ : (2 ±√7)/3 .
y' = 6
2) y = x - 1/2
y' = 1
3) y = x^2 + sinx
y' = 2x + cosx
y'(x0) = 2*pi + cos(pi) = 2*pi - 1
4) y = (x^4)/2 - (3*x^2)/2 + 2x
y' = 1/2 * 4x^3 - 1/2 * 6x + 2 = 2x^3 - 3x + 2
y'(x0) = 2*8 - 3*2 + 2 = 16 - 6 + 2 = 12
5) y = sin(3x-2)
y' = cos(3x-2)*(3x-2)' = 3cos(3x-2)
6) не поняла, что знак "V" обозначает, пусть будет делением
y = 3x^2 - 12/x
y' = 6x - 12*(-1/(x^2)) = 6x + 12/(x^2)
y'(x0) = 6*4 + 12/16 = 24 + 3/4 = 24,75
7) y = 1/(2tg(4x-pi)) + pi/4
y' = -1/(2tg^2(4x-pi)) * 1/cos^2(4x-pi) * 4 + 0 = -2/(tg^2(4x-pi)*cos^2(4x-pi)) = -2/sin^2(4x-pi)