М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Romabl4
Romabl4
29.12.2022 08:51 •  Алгебра

Решите неравенство -54\x^2-49 (меньше или равно 0) знак \ дробь!

👇
Ответ:
10ЛК
10ЛК
29.12.2022

Получиться 2867 если мы все это решим

 

 

4,6(20 оценок)
Открыть все ответы
Ответ:
dimashevchuk007
dimashevchuk007
29.12.2022

Объяснение:

Ранние годы

Родилась 11 июня (23 июня) 1889 года в Одессе.

Первое образование в биографии Ахматовой было получено в Мариинской гимназии в Царском Селе. Затем в жизни Ахматовой проходило обучение в Фундуклеевской гимназии Киева. Она посещала историко-литературные, женские курсы.

Начало творческого пути

Впервые стихотворение Анны Ахматовой было опубликовано в 1911 году. Первая книга стихов поэтессы вышла в 1912 году («Вечер»).

В 1914 был опубликован второй ее сборник «Четки» тиражом 1000 экземпляров. Именно он принес Анне Андреевне настоящую известность.  Еще через три года поэзия Ахматовой вышла в третьей книге «Белая стая», в два раза большим тиражом.

Личная жизнь

В 1910 году вышла замуж за Николая Гумилева, от которого в 1912 году родила сына Льва Николаевича. Затем в 1918 году жизни поэтессы произошел развод с мужем, а вскоре новое замужество с поэтом и ученым В. Шилейко.

А в 1921 году Гумилев был расстрелян.  Со вторым мужем она рассталась, а в 1922 году у Ахматовой завязались отношения с искусствоведом Н. Пуниным.

Изучая биографию Анны Ахматовой стоит кратко отметить, что многих близких ей людей постигла печальная участь. Так, Николай Пунин трижды находился под арестом, а единственный сын Лев более 10 лет пробыл в заключении.

Творчество поэтессы

Творчество Ахматовой затрагивает эти трагические темы. Например, поэма «Реквием»(1935-1940) отображает нелегкую судьбу женщины, чьи близкие люди страдали от репрессий.

В  Москве, в июне 1941 года Анна Андреевна Ахматова встретилась с Мариной Цветаевой, это была их единственная встреча.

Для Анны Ахматовой стихи были возможностью рассказать людям правду. Она проявила себя как искусный психолог, знаток души.

Стихи Ахматовой о любви доказывают тонкое понимание ею всех граней человека.  В своих стихотворениях она проявляла высокую нравственность. Кроме того лирика Ахматовой наполнена размышлениями о трагедиях народа, а не только личными переживаниями.  

Смерть и наследие

Умерла знаменитая поэтесса в Подмосковном санатории 5 марта 1966 года. Была похоронена под Ленинградом на Комаровском кладбище.

Именем Ахматовой названы улицы во многих городах бывшего СССР. Литературно – мемориальный музей Ахматовой находится в Фонтанном доме в Санкт-Петербурге. В этом же городе установлено несколько памятников поэтессе. Мемориальные доски, в память о посещении города, установлены в Москве и Коломне.

4,5(36 оценок)
Ответ:
3HAIKa11
3HAIKa11
29.12.2022

1)х∈(-∞, -1), решение системы неравенств.

2)х∈ (-8, 9), решение системы неравенств.

3)х∈(-0,25, 1], решение системы неравенств.

Объяснение:

1) Решить систему неравенств:

−x+4>0

 5x<−5

-х> -4

 x< -1

x<4 знак меняется   х∈(-∞, 4) интервал решений

x< -1                             х∈(-∞, -1) интервал решений

Неравенства строгие, скобки круглые.

Отмечаем на числовой оси оба интервала и ищем пересечение решений, то есть, такое решение, которое подходит двум данным неравенствам.

Пересечение  х∈(-∞, -1), это и есть решение системы неравенств.

2) Реши систему неравенств:

x²−81<0  

x+8>0

Приравняем первое неравенство к нулю и решим квадратное уравнение:

x²−81=0  

x²=81

х₁,₂=±√81

х₁= -9

х₂=9

Начертим СХЕМУ параболы (ничего вычислять не нужно), которую выражает уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= -9 и х=9. По графику ясно видно, что у<0  при х от -9 до 9, то есть, решения неравенства в интервале  

х∈ (-9, 9), это решение первого неравенства.

Неравенство строгое, скобки круглые.

Теперь решим второе неравенство:

x+8>0

x> -8

х∈ (-8, +∞), это решение второго неравенства.

Неравенство строгое, скобки круглые.

Теперь нужно на числовой оси отметить интервалы решений двух неравенств и найти пересечение решений, то есть, такое решение, которое подходит двум неравенствам.

Пересечение х∈ (-8, 9), это и есть решение системы неравенств.

3) Реши систему неравенств:

-x>x−2(5x+1)

8−x≥(1+3x)²−9x²   в правой части разность квадратов, раскрыть по формуле:

-х>x-10x-2

8-x>=(1+3x-3x)(1+3x+3x)

-x> -9x-2

8-x>=1*(1+6x)

-x+9x> -2

8-x>=1+6x

8x> -2

-x-6x>=1-8

x> -2/8

-7x>= -7

x> -0,25  х∈(-0,25, +∞), это решение первого неравенства.

Неравенство строгое, скобки круглые.

x<=1    х∈(-∞, 1], это решение второго неравенства.

Неравенство нестрогое, х=1 входит в число решений, скобка квадратная. У знаков бесконечности скобка всегда круглая.

Теперь нужно на числовой оси отметить интервалы решений двух неравенств и найти пересечение решений, то есть, такое решение, которое подходит двум неравенствам.

Пересечение х∈(-0,25, 1], это и есть решение системы неравенств.

4,6(34 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ