ответ:Определим моменты времени, когда мяч находился на высоте ровно четыре метра. Для этого решим уравнение :
h(t)=-1,1+20t-10t^2
-1,1+20t-10t^2≥ 4
10t^2 - 20t + 4 + 1,1 ≤ 0
10t^2 - 20t + 5,1 ≤ 0
D = 20^2 - 4 *10*5.1 = 400 - 204 =196 =16
t1 = (20+16)/2*10 = 1,8
t2 = (20-16)/2*10 = 0,2
поскольку по условию задачи мяч брошен снизу вверх, это означает, что в момент времени (с) мяч находился на высоте 4 метра, двигаясь снизу вверх, а в момент времени (с) мяч находился на этой высоте, двигаясь сверху вниз. Поэтому он находился на высоте не менее 4 метров 1,8 − 0,2 = 1,6 секунды.
Объяснение:
В решении.
Объяснение:
Найдите значение выражений:
1) (3-x)²-x(x-21) = при x= -2,84
= 9 - 6х + х² - х² +21х =
= 9 + 15х =
=9 + 15 * (-2,84) =
=9 - 42,6 = -33,6.
2) d⁷×(d³)⁻¹ = при d= -2
= d⁷ * 1/d³ =
= d⁷/d³ = d⁷⁻³ = d⁴ = (-2)⁴ = 16.
3) a + (2y-a²)/a = при a= -10 и y=19
общий знаменатель а:
= (а*а + 2у - а²)/а =
= (а² + 2у - а²)/а =
=2у/а = 2*19/(-10) = 38/(-10) = -3,8.