Обозначаем нули на ОДЗ и находим знак функции f (x) в каждом промежутке, на которые разбиваем ОДЗ (Для того чтобы найти знак мы берем любое число, которое принадлежит данном промежутке, например на промежутке (-2; 2) можно взять число 0, и подставляем его в неравенство вместо х и тогда высчитываем, если получается отрицательное число, то ставим знак минус, а если положительное, то плюс) __-____-3___+__-2___-___2____+___3__-___4__+_>x
Так как по условию нужно найти числа, которые больше нуля, то промежутки имеющих знак плюс и являются ответом для неравенства.
(1+cos2x)/2 +(1+cos2y)/2 -(1-cos2(x+y))/2 = 2cosx ;
1+cos2x +1+cos2y -1+cos2(x+y) = 4cosx ;
(1+cos2(x+y) ) +(cos2x +cos2y )= 4cosx ;
2cos²(x+y) +2cos(x+y)cos(x-y) = 4cosx ;
2cos(x+y)( cos(x+y)+cos(x-y)) = 4cosx ;
2cos(x+y)*2 cosx*cosy = 4cosx ;
4cosx (cos(x+y)cosy -1) =0 ;
а) cosx =0 ;
x =π/2 +πk , k∈Z .
б) cos(x+y)cosy -1 =0 ⇔ cos(x+y)cosy=1 .
б₁) {cos(x+y) = -1 ; cosy= -1.
{ x+y =π+2πk ; y = π+2πn ⇒{x=2π(k -n) ; y = π+2πn .
б₂) {cos(x+y) =1 ; cosy= 1 ;
{x+y =2πk ; y = 2πn ⇒{x=2π(k -n) ; y = 2πn .