Число 25 нужно разбить на 3 слагаемых, используя цифры от 0 до 9.
Единственная подходящая комбинация: 9+9+7=25.
Из 3-х цифр: 9, 9, 7 можно составить 3 трехзначных числа:
997
799
979
Нужно проверить, какое из этих чисел делится на 11.
Правило делимости на 11: число делится на 11, когда знакочередующаяся сумма его цифр делится на 11.
997 => 9+(-9)+7=7, 7 не делится на 11. значит 997 не делится на 11.
799 => 7+(-9)+9=7, 799 не делится на 11.
979 => 9+(-7)+9=9+9-7=18-7=11; 11/11=1 - 979 делится на 11.
ответ: средняя цифра 7
x2 + 4x + 8 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = 42 - 4·1·8 = 16 - 32 = -16
Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
4x2 - 12x + 9 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-12)2 - 4·4·9 = 144 - 144 = 0
Так как дискриминант равен нулю то, квадратное уравнение имеет один действительных корень:
x = 122·4 = 1.5
3x2 - 4x - 1 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-4)2 - 4·3·(-1) = 16 + 12 = 28
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = 4 - √282·3 = 23 - 13√7 ≈ -0.21525043702153024
x2 = 4 + √282·3 = 23 + 13√7 ≈ 1.5485837703548635
2x2 - 9x + 15 = 0 Найдем дискриминант квадратного уравнения: D = b2 - 4ac = (-9)2 - 4·2·15 = 81 - 120 = -39 Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.