5) 500/3*Π
Объяснение:
Объем шара выражается формулой:
V = 4/3*Π*R^3
Образующая конуса L, радиус конуса r и высота H образуют прямоугольный треугольник.
Гипотенуза L= 5, один катет H=2,5, второй катет по теореме Пифагора
r = 5*√3/2 = 2,5*√3
Это радиус основания конуса.
Углы в этом треугольнике 90°, 30° и 60°, причем 60° находится напротив радиуса конуса.
Теперь рассмотрим сферу.
В ней проходит два радиуса, один из центра сферы до вершины конуса, второй из центра сферы до любой точки на окружности конуса.
Радиусы одинаковые, и получается равнобедренный треугольник из R, R и L
При этом угол между R и L равен 60°. Значит, треугольник равносторонний.
Это значит, что R = L = 5 см.
Объем шара
V = 4/3*Π*R^3 = 4/3*Π*5^3 = 4/3*Π*125 = 500/3*Π
3х²-2у² = 25
х²-у²+у = 5 умножим на -3 -3х²+3у²-3у = -15
3х²-2у² = 25
у²-3у = 10
Получаем квадратное уравнение:
у²-3у-10 = 0
Квадратное уравнение, решаем относительно y:
Ищем дискриминант:D=(-3)^2-4*1*(-10)=9-4*(-10)=9-(-4*10)=9-(-40)=9+40=49;
Дискриминант больше 0, уравнение имеет 2 корня:
y_1=(√49-(-3))/(2*1)=(7-(-3))/2=(7+3)/2=10/2=5;
y_2=(-√49-(-3))/(2*1)=(-7-(-3))/2=(-7+3)/2=-4/2=-2.
х находим из 1 уравнения х = +-√((25+2у²) / 3)
х₁,₂ = +-√((25+2*5²) / 3) =+-√(75 / 3) = +-√25 = +-5.
х₃,₄ = +-√((25+2*(-2)²) / 3 = +-√(33 / 3) = +-√11.