В первой системе есть парабола ветви которой направлены вверх, найдём координату вершины, нули функции, а так же ординату границы.
Построим эту параболу по трём точкам (вершина и нули) и сразу учтём ограничение.
Во второй системе есть парабола ветви которой направлены вниз, найдём координату вершины, нули функции и ординату границы.
Построим эту параболу по трём точкам (вершина и нули) и сразу учтём ограничение, кстати точки в границах совпали, поэтому функция получиться непрерывной.
Смотри вниз.
Прямая y=m параллельна или совпадает с ось Ох, поэтому она будет иметь ровно две общий точки с графиком функции, когда будет касаться одной из парабол в её вершине, то есть в точках (-3;9) и (2;-4)
У нас есть три числа, которые могут подойди: -2, 2 и 3. Проверим каждое из них. 1) Число a = -2. Подставим его в уравнение: x^2 - ((-2)^2-5*(-2))x+5*(-2) -1 = 0 Преобразуем его: x^2 -(4+10)x +-10 -1 = 0 x^2 -6x + 9=0 По теореме Виета x1 + x2 =-b ( это число перед x). В данном случае у нас получается -(-6) = 6. Следовательно а= -2 не подходит. 2) Число а =2. x^2 -(2^2 -5*2)x +5*2 -1 = 0 x^2 -(4-10)x + 10 - 1 = 0 x^2 +6x +9 = 0 Проверим это уравнение на корни. x1+x2=-b x1+x2=-6. Число а = 2 подходит. 3) Число а = 3. x^2 - (3^2 -5*3)x+5*3-1=0 x^2 -(6-15)x+ 15 - 1 = 0 x^2 + 9x + 14 = 0 x1+x2=-b x1+x2=-9. Число а = 3 не подходит. Значит ответом к данному заданию является ответ под номером 2)а=2.
В первой системе есть парабола ветви которой направлены вверх, найдём координату вершины, нули функции, а так же ординату границы.
Построим эту параболу по трём точкам (вершина и нули) и сразу учтём ограничение.
Во второй системе есть парабола ветви которой направлены вниз, найдём координату вершины, нули функции и ординату границы.
Построим эту параболу по трём точкам (вершина и нули) и сразу учтём ограничение, кстати точки в границах совпали, поэтому функция получиться непрерывной.
Смотри вниз.
Прямая y=m параллельна или совпадает с ось Ох, поэтому она будет иметь ровно две общий точки с графиком функции, когда будет касаться одной из парабол в её вершине, то есть в точках (-3;9) и (2;-4)
Значит m={-4;9}.
ответ: m={-4;9}.