Решение системы уравнений х₁=5 х₂= -6 х₃=6
у₁=1 у₂= -10 у₃=2
Объяснение:
Решить систему уравнений
(x-5y)(x²-36)=0
x-y=4
Выразим х через у во втором уравнении:
х=4+у
Первые скобки приравняем к нулю, как один из множителей, дающих в результате ноль:
x-5y=0
Подставим выраженное х через у:
4+у-5у=0
4-4у=0
-4у= -4
у= -4/-4
у₁=1
Теперь подставляем значение у в уравнение первых скобок и вычисляем х:
x-5y=0
х=5у
х=5*1
х₁=5
Теперь приравняем к нулю вторые скобки, как один из множителей, дающих в результате ноль:
x²-36=0
x²=36
х₂,₃=±√36
х₂= -6
х₃=6
x-y=4
-у=4-х
у=х-4
у₂=х₂-4
у₂= -6-4
у₂= -10
у₃=х₃-4
у₃=6-4
у₃=2
Решение системы уравнений х₁=5 х₂= -6 х₃=6
у₁=1 у₂= -10 у₃=2
Количество возможных исходов - 6*6*6=216
Для того, чтобы произошло событие А, должны осуществиться три события «выпадает грань х»:
1/6*1/6*1/6= 1/216
Появление не более двух единиц, подходящие исходы:
111, 101, 110, 011
1 - выпала единица, 0 - выпала не единица
Вычисляем вероятность для каждого случая. Сумма полученных вероятностей будет ответом.
1/6*1/6*1/6+1/6*5/6*1/6+1/6*1/6*5/6+5/6*1/6*1/6=1/216+5/216+5/216+5/216=16/216=2/27
Это ответ от дилетанта.