Известно, что площадь прямоугольника равна произведению ширины на длину. Пусть: длина прямоугольника - x ширина прямоугольника - y Тогда плошадь прямоугольника равна x*y Получим систему уравнений:
1) x = 2+y 2) x*y - (x+2)*(y-4) = 40
В первом уравнении, длина больше ширины на 2 см. Во втором уравнении, разность площадей равна 40. Раскроем скобки во втором уравнении и приведём подобные члены: x*y - (x*y - 4x + 2y - 8) = 40 x*y - x*y + 4x - 2y + 8 = 40 4x - 2y = 40-8 4x - 2y = 32 (разделим на 2, получим далее) 2x - y = 16
Теперь решим эту систему уравнений:
x = 2+y 2x - y = 16
Подставим x = 2+y во второе уравнение: 2*(2+y) - y = 16 2y + 4 - y = 16 y = 12 (см) - ширина. x = y+2 = 14 (см) - длина.
Это уравнение с одним неизвестным с, только, как мне кажется, оно записано с ошибкой, здесь надо выражение 3с - 1 взять в скобки, потому что иначе получается, что на 14 надо делить (-1), а не (3с - 1): Общий знаменатель в данном случае - 14. Поэтому первую дробь домножаем на 2 и "двойку" во второй части уравнения домножаем на 14. Получаем после этого уравнение: 2с - (3с - 1) = 2 * 14 Открываем скобки: 2с - 3с + 1 = 28 -с = 27 с = -27 Всегда стоит проверять, правильно ли решено, т.е. подставить полученное решение с = -27 в данное уравнение. Если обе части уравнения окажутся равны, то решение правильное.
Пусть:
длина прямоугольника - x
ширина прямоугольника - y
Тогда плошадь прямоугольника равна x*y
Получим систему уравнений:
1) x = 2+y
2) x*y - (x+2)*(y-4) = 40
В первом уравнении, длина больше ширины на 2 см. Во втором уравнении, разность площадей равна 40.
Раскроем скобки во втором уравнении и приведём подобные члены:
x*y - (x*y - 4x + 2y - 8) = 40
x*y - x*y + 4x - 2y + 8 = 40
4x - 2y = 40-8
4x - 2y = 32 (разделим на 2, получим далее)
2x - y = 16
Теперь решим эту систему уравнений:
x = 2+y
2x - y = 16
Подставим x = 2+y во второе уравнение:
2*(2+y) - y = 16
2y + 4 - y = 16
y = 12 (см) - ширина.
x = y+2 = 14 (см) - длина.
ответ: 14 см, 12 см.