1) 2/3х=6 (умножаем на 3/2)
3/2*2/3х=6/1*3/2 (сокращаем все, что можем)
х=9
2) 4-5х=0
5х=4
х=4/5
х=0,8
3) 10х+7=3
10х=3-7
10х=-4
х= - 4/10
х= - 0,4
4) 3-4х=х-12 (переносим в левую часть иксы, а в правую числа)
-4х-х=-12-3
-5х = -15
х= -15/-5 (минус на минус плюс)
х= 3
5) (х+7)-(3х+5)=2 (раскрываем скобки)
х+7-3х-5=2 (иксы в одну сторону, числа в другую)
х-3х=2-7+5
-2х=0
х=0
6) 3(2х-1)+12=х (раскрываем скобку, умножаем)
6х-3+12=х
6х-х=3-12
5х=-9
х= -9/5
х= -1,8
7) х/3+х/4=7 (умножаем на 12, чтобы убрать дроби)
12/1*х/3+12/1*х/4=84
4х+3х=84
7х=84
х=84/7
х=12
task/29646731 Чему равно наибольшее значение функции y=x²-3x+2 на отрезке [-5;5] ?
y= x²-3x+2 ⇔ y = (x - 3/2)² - 1/4 ⇒ min y = - 1/4 , при x = 3 /2 ∈ [-5;5]
График парабола ; A(0;2) ; B(1 ;0) ; C(2 ; 0) ; G(1,5 ; -0;25) точки графика
Функция убывает , если x ∈ [-5 ; 3/2] , возрастает , если x ∈ [ 3/2 ; 5] .
y( -5) =(-5)² - 3*(-5) +2 = 42. y( 5) =5² - 3*5 +2 = 12 .
ответ: 42.
ИЛИ
* Непрерывная на отрезке функция достигает максимума и минимума * *
y ' = (x²-3x+2) ' = (x²) '- (3x) '+(2) ' =2x -3*(x)' +0 =2x -3 . y' =0 ⇒ x =3/2
y ' " - " " +"
1,5 (критическая точка x=1,5 →точка минимума)
y ↓ min ↑
y( -5) =(-5)²- 3*(-5) +2 = 42. y (1,5)=1,5²-3*1,5 +2= -0,25 ; y( 5) =5²- 3*5 +2 = 12 .
у min = y(1,5) = - 0,25 ; у max = y(-5) = 42.