Пусть вся дорога 1 (единица), тогда х время, за которое первая бригада может отремонтировать дорогу, а у время второй бригады. Совместная работа двух бригад 6 ч. Если первая бригада отремонтирует 3/5 дороги, то время затратит (3/5)÷(1/х)=3х/5 ; если вторая бригада отремонтирует оставшуюся часть: 1-3/5=2/5 дороги. то время затратит (2/5)÷(1/у)=2у/5 , и времени они затратят 12 часов. Составим два уравнения:
1/х+1/у=1/6
3х/5+2у/5=12
Выделим х во втором уравнении:
3х/5+2у/5=12
15х+10у=300
3х+2у=60
х=(60-2у)/3
Подставим значение х в первое уравнение:
3/(60-3у)+1/у=1/6
18у+360-12у=60у-2у²
2у²-54у+360=0
у²-27у+180=0
D=9
у₁=12 часов вторая бригада может отремонтировать дорогу самостоятельно.
х₁=(60-2*12)/3=36/3=12 часов первая бригада может отремонтировать дорогу самостоятельно.
у₂=15 часов вторая бригада может отремонтировать дорогу самостоятельно.
х₂=(60-2*15)/3=30/3=10 часов первая бригада может отремонтировать дорогу самостоятельно.
ответ: Или первая за 12 часов и вторая за 12 часов; Или первая за 10 часов и вторая за 15 часов.
1)] x (деталей/день) - изготовляла 1 бригада
х-8(деталей/день) - изготовляла 2 бригада.
y(дней) - время работы 1 бригады
y+1(дней) - время работы 2 бригады
Тогда:
y=240/x
y+1=240/(x-8)
240/x +1=240/(x-8)
240(x-8)+x(x-8)-240x=0
240x-1920+x^2-8x-240x=0
x^2-8x-1920=0
D=8^2+4*1920=64+7680=7744=88^2
x1=(8+88)/2=48
x2=(8-88)/2=-40 - не подходит
ответ: 48 и 40.
2)
Имеет смысл когда:
2(а+1,5)(а+4)>0 и -(a+5)(a-2)>0
a>-1,5 или a<-4 -5<a<2
-5<a<-4 и -1,5<a<2
Дробь 11/19 увеличиваем знаменатель, числитель уменьшаем, сокращаем и получается дробь 1/2 или 0,5