Неполные квадратные уравнения, к которых коэффициент c=0, то есть уравнение имеет вид ax²+bx=0.
Такие уравнения решаются разложением левой части уравнения на множители.
\[a{x^2} + bx = 0\]
Общий множитель x выносим за скобки:
\[x \cdot (ax + b) = 0\]
Это уравнение — типа «произведение равно нулю«. Произведение равно нулю, если хотя бы один из множителей равен нулю. Приравниваем к нулю каждый из множителей:
\[x = 0;ax + b = 0\]
Второе уравнение — линейное. Решаем его:
\[ax = - b\_\_\_\left| {:a} \right.\]
\[x = - \frac{b}{a}\]
Таким образом, неполное квадратное уравнение вида ax²+bx=0 имеет 2 корня,один из которых равен нулю, а второй — -b/a.
Примеры.
\[1){x^2} + 18x = 0\]
Общий множитель x выносим за скобки:
\[x \cdot (x + 18) = 0\]
ДОЛЖНО БЫТЬ ПРАВИЛЬНО
3. точка а расположена ближе к 0 если точки на координатной прямой расположены со стороны -, если точки расположены на координатной прямой со стороны +, то точка а должна быть удаленна дальше чем точка b что бы выражение a>b было верным.
4. если ты про символ <, то это не "не больше", а "менее"
5. если ты про символ >, то это не "не меньше", а"более"
6. данную форму записи нельзя назвать неравенством
7. данную форму записи нельзя назвать неравенством
8.неравенства , содержащие знаки >(больше) и < (меньше) называются СТРОГИМИ. Неравенства, содержащие знаки ≤(меньше или равно) и ≥
(больше или равно) называются НЕСТРОГИМИ.
Объяснение:
3. попробуй построить координатную прямую и нарисовать точки а и b так что бы а было больше b.
4. лично я не знаю как выглядит и изображается символ "не больше"
5. лично я не знаю как выглядит и изображается символ "не меньше"
6.данную форму записи нельзя назвать неравенством
7.данную форму записи нельзя назвать неравенством
4x * 7y = 28xy
Объяснение: