М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
toshamilgis
toshamilgis
05.08.2020 04:59 •  Алгебра

А)– х2 – 2х + 3 > 0; б) x2 -36 ≥ 0; в) x2-7х≤0 Найти ОДЗ:

√у = 116-9х2.

Образец. Найти ОДЗ у = √14х2-25.Решение.


А)– х2 – 2х + 3 > 0; б) x2 -36 ≥ 0; в) x2-7х≤0 Найти ОДЗ: √у = 116-9х2. Образец. Найти ОДЗ у = √1

👇
Ответ:
lina2017qa
lina2017qa
05.08.2020

Объяснение:

Решение на фотографии ...


А)– х2 – 2х + 3 > 0; б) x2 -36 ≥ 0; в) x2-7х≤0 Найти ОДЗ: √у = 116-9х2. Образец. Найти ОДЗ у = √1
4,5(79 оценок)
Открыть все ответы
Ответ:
Imfind
Imfind
05.08.2020
1. Исследуйте функцию и постройте ее график y=x^3 - 3x^2 + 4 
2. Найдите наибольшее и наименьшее значении функции на данном промежутке: f(x)=(x+1)^2 (x-1)        [-2;0] .

 y= x³ - 3x² + 4 
1.Область определения функции D(f)  =   (-∞; ∞).
2. Определяем точки пересечения графики функции с координатными осями 
a) c осью абсцисс : y =0   ⇒  x³ - 3x² + 4  =0 , x =  -1 корень 
(x³+x²) - (4x²+4x) +(4x+4) = 0 ;
x²(x+1) -4x(x +1) +4(x +1) =0 ⇔(x+1)(x² - 4x+4) =0⇔(x+1)(x-2)²  =0→
A(-1 ;0) ; B(2 ;0).
b) с осью ординат:  x =0   ⇒ y = 4  → C(0 ;4).
3.Определяем интервалы монотонности функции 
Функция возрастает (↑), если у ' >0, убывает(↓) , если у ' < 0.
y ' =3x² -6x  =3x(x-2) ; 
y '    +                     -                      +
 0  2
y     ↑      max         ↓          min         ↑

x =0 точка максимума _ мах (у) = 4
x =2 точка минимума _ min (у) = 2³ -3*2² +4 =0 
Функция возрастает , если x ∈(-∞ ; 0) и  x ∈(2 ;∞ ),  
убывает ,если  x ∈ (0 ;2 ).
---
4)
определим точки перегиба , интервалы  выпуклости и вогнутости
y '' = (y ') '  =(3x² -6x) ' = 6x -6=6(x -1).
y '' =0 ⇒   x=1 (единственная точка перегиба)
График функции  выпуклая , если   y ''< 0 , т.е.  если x < 1 
вогнутая, если  y '' >0 ⇔ x > 1

5. Lim y  → - ∞    ;     Lim y  →  ∞
   x→ - ∞                      x→ ∞ 
* * * * * * * * *
2.
Найдите наибольшее и наименьшее значении функции на данном промежутке: f(x)=(x+1)^2 (x-1)        [-2;0]

f(x)=(x+1)² (x-1)
f ' (x) =2(x+1)(x -1)+(x+1)² =(x+1)(2x-2+x+1) =3(x+1)(x -1/3)
f'(x)      +                  -                           +
(-1) (1/3)  (1/3)  ∉   [-2 ;0]
f(x)     ↑      max         ↓          min         ↑ 

f(-2) =(-2+1)²( -2-1) = -3 ;
f(-1) =(-1+1)²( -2-1) = 0 ;
f(0)  =(0+1)²(0 -1) = -1 ;

наибольшее  значении функции на данном промежутке: max f(x)=f(-1) =0 ;
наименьшее значении функции_minf(x)=f(-2) = -3 .
4,6(3 оценок)
Ответ:
JackDead
JackDead
05.08.2020
1)  27*2^x-8*3^x=0  /3^x
27*(2/3)^x - 8 = 0
(2/3)^x = 8/27
(2/3)^x = (2/3)^3
x = 3
ответ: х = 3

2)  2^(x+1) - 2^(x-1)=3^(2-x)
2*(2^x) - (1/2)*(2^x)  = 9/(3^x)
(2^x) *(2 - 1/2) = 9/(3^x)
(2^x)*(3/2) = 9/(3/2)   
(6^x) = 6^1
x = 1
ответ: х = 1

3)  9*(4^x)  - 13*(6^x) + 4*(9^x) = 0
 9*(2^2x)  - 13*(2^x)*(3^x) + 4*(3^2x) = 0   /(3^2x)
9*(2/3)^2x - 13*(2/3)^x + 4 = 0
(2/3)^x = t
9t^2 - 13t + 4 = 0
D = 169 - 4*9*4 = 25
t1 = (13 - 5)/18
t1 = 4/9
t2 = (13 + 5)/18 
t2 = 1
1)  (2/3)^x = 4/9
(2/3)^x = (2/3)^2
x1 = 2
2)  (2/3)^x = 1
(2/3)^x = (2/3)^0
x2 = 0
ответ: x1 = 2; x2 = 1
4,4(98 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ