Для удобства объем бассейна обозначим v м³, х-время за которое 1 кран заполнит, у-время за которое 2 кран заполнит. запуск первого крана: он работает х/3 времени, и заполнит (v/у)*(х/3) второй аналогично : (v/х)*(у/3) 1) + =13/18v + =13/18 =13/18 39ху=х²+у² 39xy=(x+y)²-2xy 41xy=(x+y)² 2) ((v/у)+(v/х))*3 часа 36 минут=v *3.6=1 (x+y)*36=10*xy 3) q=x+y w=xy получили систему q²=41*36*q/10 q=41*36/10=147,6 10w=36*q ⇒w=3,6*q=531.36 получили систему x=147,6-y (147,6-y)*y=531.36 147,6y-y²=531.46 y²-147,6*y-531.46=0
Формула суммы кубов
(3x+2)(9x^2-6x+4) = (3x)^3 + 2^3 = 27x^3 + 8
Подставляем
(27x^3 + 8)(3x + 4) = (3x - 4)^2 + 32
81x^4 + 24x + 108x^3 + 32 = 9x^2 - 24x + 16 + 32
81x^4 + 108x^3 - 9x^2 + 48x - 16 = 0
Корни у этого уравнения - иррациональные. Подберем примерно.
f(0) = -16 < 0
f(-1) = 81 - 108 - 9 - 48 - 16 = -100 < 0
f(-2) = 81*16 - 108*8 - 9*4 - 48*2 - 16 = 284 > 0
-2 < x1 < -1
f(1) = 81 + 108 - 9 + 48 - 16 = 212 > 0
0 < x2 < 1
Можно уточнить до 0,1
f(-1,6) = 81*1,6^4 - 108*1,6^3 - 9*1,6^2 - 48*1,6 - 16 = -27,37 < 0
f(-1,7) = 81*1,7^4 - 108*1,7^3 - 9*1,7^2 - 48*1,7 - 16 = 22,36 > 0
-1,7 < x1 < -1,6
f(0,3) = 81*0,3^4 + 108*0,3^3 - 9*0,3^2 + 48*0,3 - 16 = 1,16 > 0
f(0,2) = 81*0,2^4 + 108*0,2^3 - 9*0,2^2 + 48*0,2 - 16 = -5,77 < 0
0,2 < x2 < 0,3
Но я чувствую, что в задаче ошибка, потому что в 7 классе такое может быть только если на олимпиаде.