ответ: 1) (-4; -1.5) U (¹/₃; +oo) 2) (-oo; -1) U (2; 4)
Объяснение:
подобные неравенства решаются методом интервалов))
что при умножении, что при делении правила получения знака результата одинаковы:
"+" на "+" будет "+";
"-" на "+" будет "-";
"-" на "-" будет "+"... потому решения этих неравенств очень похожи))
главное --найти корни для каждого множителя/делителя или делимого
(2x+3)(3x-1)(x+4) > 0
корни: -1.5; ¹/₃; -4... определяем знак на крайнем правом промежутке (на +бесконечности) --будет "+" и при переходе через корень функция меняет знак (кратных корней нет)
---------(-4)++++++++(-1.5)---------(¹/₃)+++++++
ответ: (-4; -1.5) U (¹/₃; +oo)
корни: 2; -1; 4... определяем знак на крайнем правом промежутке (на +бесконечности) --будет "+" и при переходе через корень функция меняет знак (кратных корней нет)
Сначала определим время, за которое мотоциклист планировал проехать свой путь (первоначальная скорость=Х). t=120:X Потом он ехал со скоростью 1,2 Х те же 120 км, плюс остановка в пути 15 минут, это 0,25 часа (15:60=0,25). Можем составить уравнение: 120:Х =120:1,2Х + 0,25 Приводим к общему знаменателю, это 1,2Х , подписываем дополнительные множители, перемножаем и получаем новое уравнение: 144 = 120 + 0,3Х -0,3Х = 120 - 144 -0,3Х = - 24 0,3Х = 24 Х = 24 : 0,3 Х = 80 (км\час, первоначальная скорость мотоциклиста). ПРОВЕРКА: 120:80=1,5 (часа) 120:96+0,25=1,5(часа).
ответ: 1) (-4; -1.5) U (¹/₃; +oo) 2) (-oo; -1) U (2; 4)
Объяснение:
подобные неравенства решаются методом интервалов))
что при умножении, что при делении правила получения знака результата одинаковы:
"+" на "+" будет "+";
"-" на "+" будет "-";
"-" на "-" будет "+"... потому решения этих неравенств очень похожи))
главное --найти корни для каждого множителя/делителя или делимого
(2x+3)(3x-1)(x+4) > 0
корни: -1.5; ¹/₃; -4... определяем знак на крайнем правом промежутке (на +бесконечности) --будет "+" и при переходе через корень функция меняет знак (кратных корней нет)
---------(-4)++++++++(-1.5)---------(¹/₃)+++++++
ответ: (-4; -1.5) U (¹/₃; +oo)
корни: 2; -1; 4... определяем знак на крайнем правом промежутке (на +бесконечности) --будет "+" и при переходе через корень функция меняет знак (кратных корней нет)
---------(-1)++++++++(2)---------(4)+++++++
ответ: (-oo; -1) U (2; 4)