Мы знаем, что есть признак делимости числа на 9(если сумма цифр числа делится на 9, то и число делится на 9). Значит, что число должно делится не только на 9, но и на 10, для делимости на 90. 3+5=8. Это сумма известных нам цифр числа Теперь нам нужно найти две цифры, в сумме дающие 10.(две потому что нужна еще делимость на 10). Это цифры 8+2, 6+4, 4+6, 2+8. 35280. Сумма цифр равна 18(число кратно 9), а также оканчивается на 0(признак делимости на 10) Далее, можно тогда и 35820. 35460, 35640. ответ:35460, 35640, 35820, 35280.
Всё дело в том , что под знаком модуля может стоять и положительное число и отрицательное. |x| = x при х ≥ |x| = -x при х меньше 0 первый модуль = 0 при х = 3, второй =0 при х = -3 Вся числовая прямая этими точками разделится на промежутки: -∞ -3 3 +∞ На каждом промежутке функция будет выглядеть по - своему. а) (-∞; -3) у = -(х - 3) + х + 3 = -х +3 +х +3 = 6 у = 6 б) [-3;3] у = -(х -3) -(х +3) = -х +3 -х -3 = -2х у = -2х в) (3; +∞) у = х - 3-(х +3) = х - 3 - х - 3 = - 6 у = -6 теперь на координатной плоскости надо построить график этой кусочной функции. Теперь насчёт у = кх. Это прямая, проходящая через начало координат. Чтобы она имела с нашим графиком только одну точку пересечения, надо к выбирать любые, кроме к∈ (0; -2]
-сos(x/3)=-sqrt(3)/2
cos(x/3)=sqrt(3)/2
x/3=+-П/6+2Пk
x=+-П/2+6Пk