y=-2(x-1)^2
y=-2(x^2-2x+1)
y=-2x^2+4x-2
f(x)=-2x^2+4x-2
График - парабола, ветви вниз, т.к. коэффициент при x^2 отрицательный,
a=-2.
Точка вершины параболы (1;0): x=-b/2a=-4/2*-2=-4/-4=1;
y=-2*1+4*1-2=-4+4=0
Пересечение с осью У, при х=0: -2*0+4*0-2=-2 - точка пересечения (0;-2).
Точки пересечения с осью Х, при y=0:
-2x^2+4x-2=0 |2
-x^2+2x-1=0
D=2^2-4*(-1)*(-1)=0 Уравнение имеет один корень
х=(-2+0)/-2=1
График пересекается с осью Х в точке (1;0), т.е. вершина параболы лежит на оси 0Х.
График во вложении
Графики функций у=kx+l и y=x²+bx+c при k= -3; l= -8; b=7; c=16 пересекаются в точках A(-4; 4) и B(-6; 10).
Объяснение:
у=kx+l y=x²+bx+c A(-4; 4); B(-6; 10)
1)Составим уравнение прямой у=kx+l по формуле:
(х-х₁)/(х₂-х₁) = (у-у₁)/(у₂-у₁)
Значения х и у - координаты точек.
х₁= -4 у₁=4
х₂= -6 у₂=10
Подставляем значения х и у в формулу:
(х-(-4)/(-6)-(-4) = (у-4)/(10-4)
(х+4)/(-2) = (у-4)/6 перемножаем крест-накрест, как в пропорции:
6х+24= -2у+8
2у= -6х+8-24
2у= -6х-16
у= -3х-8, искомое уравнение.
k= -3 l= -8.
2)y=x²+bx+c A(-4; 4); B(-6; 10)
Используя координаты данных точек, составим систему уравнений:
4=(-4)²+b*(-4)+c
10=(-6)²+b*(-6)+c
Произвести необходимые действия:
4=16-4b+c
10=36-6b+c
Выразим с через b в двух уравнениях:
-с=16-4b-4 -с=12-4b
-c=36-6b-10 -c=26-6b
Приравняем правые части уравнений, так как левые равны:
12-4b=26-6b
-4b+6b=26-12
2b=14
b=7
Теперь вычислим с:
-с=12-4b
-с=12-4*7
-с=12-28
-с= -16
с=16
Подставляем полученные значения b и c в уравнение:
у=x²+7x+16, искомое уравнение.
угол 150 градусов, как легко заметить, = 90 + 60
=> задача построить угол в 60 градусов (предполагается, что прямой угол строить умеем...)
а угол в 60 градусов всегда в паре с углом в 30 градусов в любом прямоугольном треугольнике, т.е. если построим угол в 30 градусов, то угол в 60 градусов получится...
а угол в 30 градусов строится из соображания, что катет в прямоугольном треугольнике, лежащий против угла в 30 градусов, равен половине гипотенузы...
такая идея...
1. провести прямую
2. построить к ней _|_ (получили угол 90 градусов)
3. этот _|_ будет катетом, лежащим против угла в 30 градусов (т.е. угол в 60 градусов будет рядом с углом в 90 градусов) ---на _|_ отмечаем отрезок любой длины (катет), обозначаем точку А например...
4. из точки А строим _|_ к уже имеющемуся _}_-ру (получится прямая, параллельная первой прямой...)
5. раствором циркуля = катет*2 отмечаем гипотенузу прямоугольного треугольника (прямой угол в вершине А)
угол между построенной гипотенузой и первой прямой = 150 градусов