М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ruslikua3
ruslikua3
13.04.2023 07:08 •  Алгебра

У=2х^2−6+4 функция. нужен график и свойства: 1. Область определения

2. Область значений

3. Монотонность (интервалы увеличения и уменьшения):

4. Наименьшее значение функции, наибольшее значение.

5. Интервалы стабильности персонажа

👇
Открыть все ответы
Ответ:
Masha12fg
Masha12fg
13.04.2023

Если следовать условию задачи, то у нас получается прямоугольный треугольник, в котором АС и СВ катеты, а АВ гиппотенуза.

Синус угла А=Против катет (СВ)\Гиппотенузу(АВ)

Чтобы найти угол нужно найти катет СВ. Для этого воспользуемся теоремой пифагора. АВ в квадрате-АС в квадрате=СВ в квадрате.=> 900-576=324=> СВ в квадрате=324, значит, СВ=18

Теперь находим синус. Sin A= 18/30=0,6. Чтобы узнать градусную меру, нужно, воспользоваться таблицей Брадиса. По таблице Брадиса Sin 0,6=37 градусов.(примерно)

4,8(62 оценок)
Ответ:
Neznau27
Neznau27
13.04.2023

Рассматривается выражение y = x^2 + 8x + 18

 

Докажем, что y положительно при любом значении x. Допустим, что это не так. Найдём такие x, при которых y ≤ 0. Для этого решим неравенство:

 

x^2 + 8x + 18 \leq 0 \Leftrightarrow x^2 + 8x + 16 + 2 \leq 0 \Leftrightarrow \left(x + 4\right)^2 + 2 \leq 0

 

Или

 

\left(x + 4\right)^2 \leq -2

 

Что не имеет решений, так как \left(x + 4\right)^2 \geq 0 \;\; \forall x

 

Мы пришли к противоречию. Следовательно, y = x^2 + 8x + 18 принимает положительное значение при любых x.

 

Для нахождения наименьшего значения найдём \frac{dy}{dx}:

 

\frac{dy}{dx} = 2x + 8

 

Приравняв его 0, найдём точку экстремума:

 

2x + 8 = 0 \Rightarrow x = -4

 

Убедимся, что найденная точка — действительно минимум.

 

\frac{dy}{dx}|_{x=-5} = -10 + 8 = -2 < 0

 

\frac{dy}{dx}|_{x=-3} = -6 + 8 = 2 0

 

Итак, первая производная меняет в точке x = -4 знак с "-" на "+", следовательно, в этой точке мы действительно имеем минимум.

 

Значение y при x = -4:

 

y|_{x=-4} = (-4)^2 + 8 \cdot (-4) + 18 = 2

4,8(42 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ