Если голуби, стартовавшие синхронно и с одинаковой скоростью, долетели до зерна одновременно, значит, образованные фонарем, домом, землей и траекторией полета голубей два прямоугольных треугольника будут иметь равные гипотенузы (траектории полета голубей).
У одного треугольника катеты будут соответственно равны высоте дома (15 м) и отрезку земли до места, где Анна рассыпала зерно, обозначим его Х м.
У другого треугольника катеты будут соответственно равны высоте фонарного столба (8 м) и отрезку земли до места, где Анна рассыпала зерно:
23 - Х м.
Так как гипотенузы треугольников равны, то на основании теоремы Пифагора, согласно которому квадрат гипотенузы равен квадрату катетов, можно составить уравнение:
с2 = 152 + Х2 = 82 + (23 – Х) 2;
152 + Х2 = 82 + 232 – 2 * 23 * Х + Х2;
152 + Х2 = 82 + 232 – 2 * 23 * Х + Х2;
152 = 82 + 232 – 2 * 23 * Х;
225 = 64 + 529 – 46 * Х;
46 * Х = 64 + 529 – 225;
46 * Х = 368;
Х = 368 : 46;
Х = 8.
ответ: расстояние от дома до места, где рассыпано зерно, составляет 8 м.
Объяснение:
5a^2-2=5a^2-2
Объяснение:
Дано:
(-2а^3+3a^2)-(2a-1)+(2a^2-5a)-(3-2a^3-7a)=5a^2-2
Раскрываем скобки в левой от знака равенства части:
-2а^3+3a^2-2a+1+2a^2-5a-3+2a^3+7a
Приводим подобные члены
(-2а^3+2a^3)+(3a^2+2a^2)-2a-5a+7a-3+1 = 0a^3+5a^2+0a-2 = 5a^2-2
Мы получили в левой части выражение 5a^2-2, которое имеем и в правой. Это значит, что данные в задании выражения действительно равны и мы имеем дело с тождеством, что и требовалось доказать. (Тождество — это равенство, верное при любых допустимых значениях переменных.)
Дано: ∆АВС, угол С =90°, АС > ВС на 7 см, АВ(гипотенуза) > ВС на 8 см.
Найти: АС, ВС,АВ
Пусть ВС =х см, АС=(х+7)см, АВ =(х+8)см. По теореме Пифагора с^2=а^2 + b^2. Составим и решим уравнение.
х^2 + (х+7)^2 =(х+8)^2
х^2 +х^2+14х+49 = х^2+16х+64
2х^2 +14х+49 -х^2 -16х^2 -64=0
х^2 -2х -15 =0
D = 4+60=64
х=(2+8):2= 5(Вариант (2-8):2 не подходит так как ответ будет отрицательным)
Следовательно, ВС=5, АС=12, АВ=13
ответ:ВС=5, АС=12, АВ=13
Объяснение: