3х^2-5х-12<0
Приравняем к нулю, получим квадратное уравнение, решим его:
3х^2-5х-12=0
D = 25 + 144 = 169 = 13^2 (в квадрате)
x1 = (5 + 13) / 6 = 3
x2 = (5 - 13) / 6 = -1 1/3
Графиком этого уравнения является парабола, её "ветви" направлены вверх, т. к. коэффицент перед x^2 положительный. Схематично покажем значение y на графике.
+ - +
-1 1/3 3
Нам нужно, чтобы у был меньше нуля, поэтому ответ : ( - 1 1/3 ; 3) (потому что неравенство строгое).
:)
tg α – tg β = tg (α – β) (1 + tg α tg β).
Получаем:
tg x tg 2x tg 3x = tg 3x – tg x + tg 4x – tg 2x,
tg x tg 2x tg 3x = tg 2x (1 + tg x tg 3x) + tg 2x (1 + tg 2x tg 4x),
tg 2x (1 + tg x tg 3x – tg x tg 3x + 1 + tg 2x tg 4x) = 0,
tg 2x = 0 или tg 2x tg 4x = –2.
С первым понятно, что делать. Второе:
tg 2x tg 4x = –2,
tg 2x · 2 tg 2x / (1 – tg² 2x) = –2,
tg² 2x = tg² 2x – 1.
Это равенство невозможно.
Все решения получаются из уравнения tg 2x = 0, то есть 2x = πn, x = πn/2. Значения с нечётными n не подходят (tg x и tg 3x не существуют) , значит, ответ x = πk. Возможно так