М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ilnitskiy
ilnitskiy
31.10.2020 08:12 •  Алгебра

Трубу длиной 21 м разрезали на 3 части. длина первой части составила 3/7 длины всей трубы, а второй части 1/3 трубы. найдите длину третьей части трубы

👇
Ответ:
dhgti
dhgti
31.10.2020

приводим дроби к общему знаменателю. 3/7=9/21. 1/3=7/21. Длина всей трубы это 1. Значит длина 3 части: 1-9/21-7/21=5/21. Теперь находим длину 3 куска:21*5/21=5. ответ: 5 м

4,4(34 оценок)
Ответ:
Nina34732
Nina34732
31.10.2020

21:7=3м 1/7

 3*3=9м 1 часть 

21:3=7м 2часть

7+9=16м

21-16=5м 3часть 

4,6(22 оценок)
Открыть все ответы
Ответ:
mariyshak57
mariyshak57
31.10.2020

      Для того, чтобы выяснить наибольшее число залов, которые можно обойти, не заходя ни в какой зал дважды, нужно правильно раскрасить замок - треугольник. Раскрашиваем в шахматном порядке. Тогда путь по залам - это граф, с вершинами в центрах залов и ребрами  - проходами между залами. Видно, ни одно ребро не соединяет вершины одного цвета.

     Если начать раскрашивать с первого нижнего углового треугольника  в порядке: 1 красим, один - нет, то сумму незакрашенных треугольников можно вычислить по формуле сцммы 1-х n-членов арифметической прогрессии:  

а₁=1 (второй верхний ряд треугольников сверху:

а₂=9 (десятый ряд треугольников)

   Всего незакрашеные треугольники есть в 9-и рядах, вершина - закрашена)

S₉=(1+9)/2*9=5*9=45 незакрашенных треугольников - залов, значит можно посетить не более 45 незакрашенных залов.

    Тогда маршрут может проходить не более, чем по 45+1 закрашенным залам: А - незакрашенный треугольник;

                                      В - закрашенный треугольник.

                             Маршрут=А+В=А+(А+1)=45+45+1

                             Маршрут = 91 зал

    Во вложении 1 - маршрут, который начинается в нижнем левом треугольнике и,  продолжаясь по спирали, заканчивается в среднем закрашенном треугольнике, в четвёртом снизу ряду.

    Залы, в которые не надо заходить, иначе придется посетить один зал дважды, отмечены чифрами от 1 до 9 по маршруту движения.

   Для наглядности, во вложении 2, пример, подтверждающий формулу, рассмотрен на маленьком треугольнике, разделенном на  9 маленьких.


Замок в форме треугольника со стороной 10 метров разбит на 100 треугольных залов со сторонами 1 м. в
Замок в форме треугольника со стороной 10 метров разбит на 100 треугольных залов со сторонами 1 м. в
4,4(61 оценок)
Ответ:
pudova20001katya
pudova20001katya
31.10.2020
Так как EC - биссектриса, то:
\frac{DC}{ED} = \frac{CK}{EK} \ \ \textless \ =\ \textgreater \ \ \frac{CK}{DC}= \frac{EK}{ED}
при делении точкой отрезка на 2 части, относящиеся как m к n, есть формула для вычисления координат этой точки:
x= \frac{x_1+\lambda *x_2}{1+\lambda} 
\\y= \frac{y_1+\lambda *y_2}{1+\lambda} 
\\\lambda= \frac{m}{n}
ищем длины сторон:
для этого используем формулу |AB|=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}
|ED|=\sqrt{(3+4)^2+7^2}=\sqrt{98}
\\|EK|=\sqrt{(3-8)^2+(2-3)^2}=\sqrt{26}
\\|DK|=\sqrt{144+64}=\sqrt{208}
находим координаты точки C:
x_1=8;\ x_2=-4;\ y_1=3;\ y_2=-5
\\\lambda= \frac{CK}{DC} = \frac{EK}{ED} = \frac{\sqrt{26}}{\sqrt{98}}=\sqrt{ \frac{26}{98} }=\sqrt{ \frac{13}{49} } = \frac{\sqrt{13}}{7} 
\\C( \frac{8+ \frac{\sqrt{13}}{7} *(-4)}{1+ \frac{\sqrt{13}}{7}} ; \frac{3+ \frac{\sqrt{13}}{7}*(-5)}{1+ \frac{\sqrt{13}}{7}} )=C( \frac{8- \frac{4\sqrt{13}}{7} }{ \frac{7+\sqrt{13}}{7} } ; \frac{3- \frac{5\sqrt{13}}{7} }{\frac{7+\sqrt{13}}{7}} )=
=C( \frac{ \frac{56-4\sqrt{13}}{7} }{\frac{7+\sqrt{13}}{7}}; \frac{ \frac{21-5\sqrt{13}}{7} }{\frac{7+\sqrt{13}}{7}})=C( \frac{56-4\sqrt{13}}{7+\sqrt{13}} ; \frac{21-5\sqrt{13}}{7+\sqrt{13}} )
теперь определим вид треугольника для этого используем теорему косинусов:
вид треугольника будем определять по косинусу самого большого угла; если cos<0, то угол тупой; если cos=0, то угол прямой; если cos>0, то угол острый.
Против большей стороны лежит больший угол, поэтому запишем теорему косинусов для DK и косинуса угла E:
DK^2=ED^2+EK^2-2ED*EK*cosE&#10;\\cosE= \frac{ED^2+EK^2-DK^2}{2ED*EK} = \frac{98+26-208}{2\sqrt{98*26}}\ \textless \ 0
cosE<0 поэтому угол тупой и треугольник тупоугольный
ответ:
1) C( \frac{56-4\sqrt{13}}{7+\sqrt{13}} ; \frac{21-5\sqrt{13}}{7+\sqrt{13}} )
2) треугольник тупоугольный
4,6(72 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ